\\¥# REXYGEN

WWW.rexygen.com

Function Blocks of REXYGEN
Reference manual

REX Controls s.r.o.

Version 2.50.12
2022-10-19
Plzeni (Pilsen), Czech Republic

www.rexygen.com

Contents

1 Introduction
1.1 How to use this manual
1.2 The function block description format
1.3 Conventions for variables, blocks and subsystems naming
1.4 The signal quality corresponding with OPC

2 EXEC — Real-time executive configuration
ARC — The REXYGEN system archive
EXEC — Real-time executive
HMI — Human-Machine Interface Configuration.
INFO — Description of Algorithm
IODRV — The REXYGEN system input/output driver
TI0TASK — Driver-triggered task of the REXYGEN system
LPBRK — Loop break
MODULE — Extension module of the REXYGEN system
0SCALL — Operating system calls
PROJECT — Additional Project Settings
QTASK — Quick task of the REXYGEN system
SLEEP — Timing in Simulink
SRTF — Set run-time flags
SYSEVENT — * Read system log
SYSLOG — Write system log oL
TASK — Standard task of the REXYGEN system
TIODRV — The REXYGEN system input/output driver with tasks
WWW — Internal Web Server Content

3 INOUT — Input and output blocks
Display — Numeric display of input values
From, INSTD — Signal connection or input
Goto, OUTSTD — Signal source or output
GotoTagVisibility — Visibility of the signal source.
Inport, Outport — Input and output port
SubSystem — Subsystem block

13
13
15
16
17

19
20
22
24
26
27
29
30
31
32
33
34
35
36
38
39
40
42
44

4 CONTENTS

INQUAD, INOCT, INHEXD — Multi-input blocks 56
OUTQUAD, OUTOCT, OUTHEXD — Multi-output blocks 57
OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with verification . . . 59
OUTRSTD — Qutput block with verification 60
QFC — Quality flags coding oo oL 61
QFD — Quality flags decodingo oL oL 62
VIN - Validation of the input signal 63
VOUT — Validation of the output signal 64
4 MATH — Math blocks 65
ABS_ — Absolute value L 67
ADD — Addition of two signals Lo 68
ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition 69
CNB — Boolean (logic) constant 70
CNE — Enumeration constant 71
CNI — Integer constanto 72
CNR — Real constant 73
DIF_ — Difference o 74
DIV — Division of two signals 0L 75
EAS — Extended addition and subtraction. 76
EMD — Extended multiplication and division 7
FNX — Evaluation of single-variable function 78
FNXY — Evaluation of two-variables function 80
GAIN — Multiplication by a constant 82
GRADS — Gradient search optimization 83
IADD — Integer addition L 85
ISUB — Integer subtraction L. 87
IMUL - Integer multiplication L. 88
IDIV — Integer division L 90
IMOD — Remainder after integer division 91
LIN — Linear interpolation L. 92
MUL — Multiplication of two signals 93
POL — Polynomial evaluation 94
REC — Reciprocal value L 95
REL — Relational operator L. 96
RTOI — Real to integer number conversion 97
SQR — Square value 98
SQRT_ — Square root o . e 99
SUB — Subtraction of two signalso Lo 100
5 ANALOG - Analog signal processing 101
ABSROT — Processing data from absolute position sensor 103
ASW — Switch with automatic selection of input 105

AVG — Moving average filter Lo 107

CONTENTS 5

AVS — Motion control unit oL oL 108
BPF — Band-pass filter oL 109
CMP — Comparator with hysteresis 110
CNDR — Noulinear conditioner 111
DEL — Delay with initialization 113
DELM — Time delay 114
DER — Derivation, filtering and prediction from the last n+1 samples . . . 115
EVAR — Moving mean value and standard deviation 117
INTE - Controlled integrator 118
KDER — Derivation and filtering of the input signal 120
LPF — Low-pass filter 122
MINMAX — Running minimum and maximum 123
NSCL — Nonlinear scaling factor 124
RDFT — Running discrete Fourier transform 125
RLIM — Rate limitero 127
S10F2 — One of two analog signals selector 128
SAI — Safety analog input oo 131
SEL — Selector switch for analog signals 134
SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals 135
SHIFTOCT — Data shift register 137
SHLD — Sample and hold oo 139
SINT — Simple integrator Lo 140
SPIKE — Spike filter o 141
SSW — Simple switch oo 143
SWR — Selector with ramp 144
VDEL — Variable timedelay L. 145
ZVAIS — Zero vibration input shaper L. 146
6 GEN — Signal generators 151
ANLS - Controlled generator of piecewise linear function 152
BINS — Controlled binary sequence generator 154
BIS — Binary sequence generatoro 156
MP — Manual pulse generator Lo 158
PRBS — Pseudo-random binary sequence generator 159
SG, SGI — Signal generators oo 161
7 REG - Function blocks for control 163
ARLY — Advancerelay 165
FLCU — Fuzzy logic controller unit 166
FRID — * Frequency response identification 168
I3PM — Identification of a three parameter model 170
LC — Lead compensatoro 172
LLC — Lead-lag compensator 173

MCU — Manual control unit 174

6 CONTENTS

PIDAT — PID controller with relay autotuner 176
PIDE — PID controller with defined static error 179
PIDGS — PID controller with gain scheduling 181
PIDMA — PID controller with moment autotuner 183
PIDU — PID controller unit Lo 189
PIDUI — PID controller unit with variable parameters 192
POUT — Pulse output 194
PRGM — Setpoint programmer L 195
PSMPC — Pulse-step model predictive controller 197
PWM — Pulse width modulation 201
RLY — Relay with hysteresis L. 203
SAT — Saturation with variable limits 204
SC2FA — State controller for 2nd order system with frequency autotuner. . 206
SCU — Step controller with position feedback 213
SCUV — Step controller unit with velocity input 216
SELU — Controller selector unit 219
SMHCC — Sliding mode heating/cooling controller 220
SMHCCA — Sliding mode heating/cooling controller with autotuner 224
SWU — Switch unit 231
TSE — Three-state element 232
8 LOGIC - Logic control 233
AND_ — Logical product of two signals 234
ANDQUAD, ANDQOCT, ANDHEXD — Logical product of multiple signals 235
ATMT — Finite-state automaton 236
BDOCT, BDHEXD — Bitwise demultiplexers 239
BITOP — Bitwise operation 240
BMOCT, BMHEXD — Bitwise multiplexers 241
COUNT — Controlled counter 242
EATMT — Extended finite-state automaton 244
EDGE_ — Falling/rising edge detection in a binary signal 247
EQ — Equivalence of two signals 248
INTSM — Integer number bit shift and mask 249
ISSW — Simple switch for integer signals L. 250
INTSM — Integer number bit shift and mask 251
ITOI — Transformation of integer and binary numbers 252
NOT_ — Boolean complementation 253
OR_ — Logical sum of two signals 254
ORQUAD, OROCT, ORHEXD — Logical sum of multiple signals 255
RS — Reset-set flip-flop circuit 256
SR — Set-reset flip-flop circuit 0oL 257

TIMER_ — Multipurpose timer 258

CONTENTS

9 TIME — Blocks for handling time

DATE_ — Current date
DATETIME — Get, set and convert time
TIME — Current time e
WSCH — Weekly schedule

10 ARC — Data archiving

10.1
10.2

10.3

10.4

Functionality of the archiving subsystem
Generating alarms and events Lo
ALB, ALBI — Alarms for Boolean value
ALN, ALNI — Alarms for numerical value.
ARS — Archive store value Lo
Trends recording L
ACD — Archive compression using Delta criterion
TRND — Real-time trend recording
TRNDV — Real-time trend recording with vector input
Archive management
AFLUSH - Forced archive flushing

11 STRING — Blocks for string operations

CNS — String constant L. L
CONCAT — Concat string by pattern
FIND — Find a Substring
ITOS — Integer number to string conversion
LEN — String length
MID — Substring Extraction
PJROCT - Parse JSON string (real output)
PJSOCT - Parse JSON string (string output)
REGEXP — Regular expresion parser
REPLACE — Replace substring
RTOS — Real Number to String Conversion
SELSOCT — Selector switch for string signals
STOR — String to real number conversion

12 PARAM - Blocks for parameter handling

GETPA — Block for remote array parameter acquirement
GETPR, GETPI, GETPB — Blocks for remote parameter acquirement
GETPS — * Block for remote string parameter acquirement
PARA — Block with input-defined array parameter
PARE — Block with input-defined enumeration parameter
PARR, PARI, PARB — Blocks with input-defined parameter
PARS — * Block with input-defined string parameter
SETPA — Block for remote array parameter setting
SETPR, SETPI, SETPB — Blocks for remote parameter setting

261
262
263
265
266

269
270
271
271
273
276
278
278
280
283
284
284

287
288
289
290
291
292
293
294
295
296
299
300
301
302

8 CONTENTS

SETPS — * Block for remote string parameter setting 318
SGSLP — Set, get, save and load parameters 319
SILO — Save input value, load output value 323
SILOS — Save input string, load output string 325
13 MODEL — Dynamic systems simulation 327
CDELSSM — Continuous state space model of a linear system with time delay328
CSSM — Continuous state space model of a linear system 331
DDELSSM — Discrete state space model of a linear system with time delay . 333
DSSM — Discrete state space model of a linear system 335
EKF — Extended (nonlinear) Kalman filter 337
FOPDT — First order plus dead-time model 340
MDL — Process model 341
MDLI - Process model with input-defined parameters 342
MVD — Motorized valve drive 343
NSSM — Nonlinear State-Space Model 344
SOPDT — Second order plus dead-time model 347
14 MATRIX — Blocks for matrix and vector operations 349
CNA — Array (vector/matrix) constant 352
MB_DASUM — Sum of the absolute values 353
MB_DAXPY — Performs y := a*x + y for vectors x,y 354
MB_DCOPY — Copies vector x tovector v 356
MB_DDOT — Dot product of two vectors 358
MB_DGEMM — Performs C := alpha*op(A)*op(B) + beta*C, where op(X) =
Xorop(X) =X"T . . . 360
MB_DGEMV — Performs y := alpha*A*x + beta*y or y := alpha*A~T*x +
beta®*y 362
MB_DGER — Performs A := alpha*x*y~T + A 364
MB_DNRM2 — Euclidean norm of a vector 366
MB_DROT — Plain rotation of a vector 367
MB_DSCAL — Scales a vector by a constant 369
MB_DSWAP — Interchanges two vectors 370
MB_DTRMM — Performs B := alpha*op(A)*B or B := alpha*B*op(A), where
op(X) = X or op(X) = X~T for triangular matrix A 372

MB_DTRMV — Performs x := A*x or x := A~T*x for triangular matrix A . . 374
MB_DTRSV — Solves one of the system of equations A*x = b or A" T*x =

b for triangular matrix Ao 377
ML_DGEBAK — Backward transformation to ML_DGEBAL of left or right eigen-

VECOTS . . . L. 380
ML_DGEBAL — Balancing of a general real matrix 382

ML_DGEBRD — Reduces a general real matrix to bidiagonal form by an or-
thogonal transformation L. 384

CONTENTS 9

ML_DGECON — Estimates the reciprocal of the condition number of a general

real matrix oL L e 386
ML_DGEES — Computes the eigenvalues, the Schur form, and, optionally,
the matrix of Schur vectors 388
ML_DGEEV — Computes the eigenvalues and, optionally, the left and/or right
elgenvectorso 390

ML_DGEHRD — Reduces a real general matrix A to upper Hessenberg form . 392
ML_DGELQF — Computes an L) factorization of a real M-by-N matrix A . . 394
ML_DGELSD — Computes the minimum-norm solution to a real linear least
squares problem oL Lo 396
ML_DGEQRF — Computes an QR factorization of a real M-by-N matrix A . . 398
ML_DGESDD - Computes the singular value decomposition (SVD) of a real

M-by-N matrix A 400
ML_DLACPY — Copies all or part of one matrix to another matrix 402
ML_DLANGE — Computes one of the matrix norms of a general matrix . . . 404
ML_DLASET — Initilizes the off-diagonal elements and the diagonal elements

of a matrix to given values oL 406
ML_DTRSYL — Solves the real Sylvester matrix equation for quasi-triangular

matrices Aand Bo oL 408
MX_AT - Get Matrix/Vector element 410
MX_ATSET — Set Matrix/Vector element 411
MX_CNADD — Add scalar to each Matrix/Vector element 412
MX_CNMUL — Multiply a Matrix/Vector by a scalar 413
MX_CTODPA — Discretizes continuous model given by (A,B) to (Ad,Bd)

using Pade approximations oL 414
MX_DIM — Matrix/\/ector dimensions 416
MX_DIMSET — Set Matrix/Vector dimensions 417
MX_DSAGET — Set subarray of AintoB 419
MX_DSAREF — Set reference to subarray of AintoB 421
MX_DSASET — Set A into subarray of B 423
MX_DTRNSP — General matrix transposition: B := alpha*A~T 425
MX_DTRNSQ — Square matrix in-place transposition: A := alpha*A~T . . . 427
MX_FILL — Fill real matrix or vector 428
MX_MAT — Matrix data storage block 429
MX_RAND — Randomly generated matrix or vector 430
MX_REFCOPY — Copies input references of matrices A and B to their output

references L. L 432
MX_SLFS — Save or load a Matrix/Vector into file or string 433
MX_VEC — Vector data storage block 435
MX_WRITE — Write a Matrix/Vector to the console/system log 436
RTOV — Vector multiplexer 438
SWVMR — Vector/matrix/reference signal switch 439

VTOR — Vector demultiplexer 440

10 CONTENTS
15 SPEC — Special blocks 441
EPC — External program call o oL 442
HTTP - HTTP GET or POST request (obsolete) 445
HTTP2 — Block for generating HT'TP GET or POST requests 447
SMTP — Send e-mail message via SMTP 449
STEAM — Steam and water properties 451
RDC — Remote data connection 453
REXLANG — User programmable block 458
16 LANG — Special blocks 477
PYTHON — User programmable block in Python 478
17 MQTT — Communication via MQTT protocol 485
MgttPublish — Publish MQTT message 486
MgttSubscribe — Subscribe to MQTT topic 488
18 MC SINGLE — Motion control - single axis blocks 491
RM_Axis — Motion control axis 494
MC_AccelerationProfile, MCP_AccelerationProfile — Acceleration pro-
file . . . 499
MC_Halt, MCP_Halt — Stopping a movement (interruptible) 503
MC_HaltSuperimposed, MCP_HaltSuperimposed — Stopping a movement
(superimposed and interruptible) 504
MC_Home, MCP_Home — Homing 505
MC_MoveAbsolute, MCP_MoveAbsolute — Move to position (absolute coor-
dinate) 507
MC_MoveAdditive, MCP_MoveAdditive — Move to position (relative to pre-
VIOUS IOLION) Lo 511
MC_MoveRelative, MCP_MoveRelative — Move to position (relative to ex-
ecution point)o 514
MC_MoveSuperimposed, MCP_MoveSuperimposed — Superimposed move . . 317
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute — Move to
position (absolute coordinate)o Lo 520
MC_MoveContinuousRelative, MCP_MoveContinuousRelative — Move to
position (relative to previous motion) 523
MC_MoveVelocity, MCP_MoveVelocity — Move with constant velocity . . . 527
MC_PositionProfile, MCP_PositionProfile — Position profile 531
MC_Power — Axis activation (power on/off) 535
MC_ReadActualPosition — Read actual position. 536
MC_ReadAxisError — Read axis error a37
MC_ReadBoolParameter — Read axis parameter (bool) 538
MC_ReadParameter — Read axis parameter 539
MC_ReadStatus — Read axis status 941

MC_Reset — Reset axis errorso 543

CONTENTS 11

MC_Set0Override, MCP_SetOverride — Set override factors 044
MC_Stop, MCP_Stop — Stopping a movement 046
MC_TorqueControl, MCP_TorqueControl — Torque/force control 548
MC_VelocityProfile, MCP_VelocityProfile — Velocity profile 551
MC_WriteBoolParameter — Write axis parameter (bool) 555
MC_WriteParameter — Write axis parameter 556
RM_AxisOut — Axisoutput 557
RM_AxisSpline — Commanded values interpolation 958
RM_Track — Tracking and inching 959
19 MC_ MULTI — Motion control - multi axis blocks 561
MC_CamIn, MCP_CamIn — Engage thecam 062
MC_CamOut — Disengage thecam 566
MCP_CamTableSelect — Cam definition 568
MC_CombineAxes, MCP_CombineAxes — Combine the motion of 2 axes into
athird axis Lo a70
MC_GearIn, MCP_GearIn — Engange the master/slave velocity ratio 573
MC_GearInPos, MCP_GearInPos — Engage the master/slave velocity ratio
in defined position 576
MC_GearOut — Disengange the master/slave velocity ratio 581
MC_PhasingAbsolute, MCP_PhasingAbsolute — Phase shift in synchro-
nized motion (absolute coordinates) 583
MC_PhasingRelative, MCP_PhasingRelative — Phase shift in synchro-
nized motion (relative coordinates) L. 586
20 MC_COORD - Motion control - coordinated movement blocks 589
RM_AxesGroup — Axes group for coordinated motion control 592
RM_Feed — * MC Feeder 595
RM_Gcode — * CNC motion control 596
MC_AddAxisToGroup — Adds one axis toa group 598
MC_UngroupAllAxes — Removes all axes from the group 599
MC_GroupEnable — Changes the state of a group to GroupEnable 600
MC_GroupDisable — Changes the state of a group to GroupDisabled 601
MC_SetCartesianTransform — Sets Cartesian transformation 602
MC_ReadCartesianTransform— Reads the parameter of the cartesian trans-
formation L 604
MC_GroupSetPosition, MCP_GroupSetPosition — Sets the position of all
axXes I @ ErOUDP . .« . v v v v v e e e e e 605
MC_GroupReadActualPosition — Read actual position in the selected co-
ordinate systemo L 607
MC_GroupReadActualVelocity — Read actual velocity in the selected co-
ordinate system L 608

MC_GroupReadActualAcceleration — Read actual acceleration in the se-
lected coordinate systemo oL 609

12

CONTENTS

MC_GroupStop — Stopping a group movement
MC_GroupHalt — Stopping a group movement (interruptible)
MC_GroupInterrupt, MCP_GroupInterrupt — Read a group interrupt
MC_GroupContinue — Continuation of interrupted movement
MC_GroupReadStatus — Read a group status
MC_GroupReadError — Read a group error
MC_GroupReset — Reset axes errors
MC_MoveLinearAbsolute — Linear move to position (absolute coordinates)
MC_MoveLinearRelative — Linear move to position (relative to execution
DOINE) o v v oot e e e
MC_MoveCircularAbsolute — Circular move to position (absolute coordi-
DALES) © v v e e e e e e e e e e e e e e e e e
MC_MoveCircularRelative — Circular move to position (relative to exe-
CUtion PoInt) v v vt
MC_MoveDirectAbsolute — Direct move to position (absolute coordinates)
MC_MoveDirectRelative — Direct move to position (relative to execution
PoOInt) ...
MC_MovePath — General spatial trajectory generation
MC_GroupSetOverride — Set group override factors

21 CanDrv — Communication via CAN bus

CanItem — Secondary received CAN message
CanRecv — Receive CAN message
CanSend — Send CAN message L.

22 OpcUaDrv — Communication using OPC UA

OpcUaReadValue — Read value from OPC UA Server
OpcUaServerValue — Expose value as an OPC UA Node
OpcUaWriteValue — Write value to OPC UA Server

A Licensing options

B Licensing of individual function blocks

C Error codes of the REXYGEN system
Bibliography

Index

Note: Only a partial documentation is available in blocks marked by * .

622
623

635
639

649
650
651
653

655
656
658
660

663

665

677

683

685

Chapter 1

Introduction

The manual “REXYGEN system function blocks” is a reference manual for the REXYGEN
system function block library RexLib. It includes description and detailed information
about all function blocks RexLib consists of.

1.1 How to use this manual

The extensive function block library RexLib, which is a standard part of the REXYGEN
system, is divided into smaller sets of logically related blocks, the so-called categories
(sublibraries). A separate chapter is devoted to each category, introducing the general
properties of the whole category and its blocks followed by a detailed description of
individual function blocks.

The content of individual chapters of this manual is following:

1 Introduction
This introductory chapter familiarizing the readers with the content and ordering
of the manual. A convention used for individual function blocks description is
presented.

2 EXEC — Runtime executive configuration
Blocks used mainly for configuration of the structure, priorities and timing of in-
dividual objects linked to the real-time subsystem of the REXYGEN system (the
RexCore program) are described in this chapter.

3 INOUT — Input and output blocks
This sublibrary consists of the blocks used mainly for the REXYGEN system. These
blocks provide the connection between the control tasks and input/output drivers.

4 MATH — Mathematic blocks
The blocks for arithmetic operations and basic math functions.

13

14

5

10

12

13

14

18

CHAPTER 1. INTRODUCTION

ANALOG — Analog signal processing

The integrator, derivator, time delay, moving average, various filters, comparators
and selectors can be found among the blocks for analog signal processing. The
starting unit block (AVS) is also very interesting.

GEN - Signal generators
This chapter deals with analog and logic signal generators.

REG — Function blocks for control

The control function blocks form the most extensive sublibrary of the RexLib li-
brary. Blocks ranging from simple dynamic compensators to several modifications
of PID (P, I, PI, PD a PID) controller and some advanced controllers are included.
The blocks for control schemes switching and conversion of output signals for var-
ious types of actuators can be found in this sublibrary. The involved controllers
include the PIDGS block, enabling online switching of parameter sets (the so-called
gain scheduling), the PIDMA block with built-in moment autotuner, the PIDAT block
with built in relay autotuner, the FLCU fuzzy controller or the PSMPC predictive con-
troller, etc.

LOGIC - Logic control

This chapter describes blocks for combinational and sequential logic control includ-
ing the simplest Boolean operations (not, and, or) and also more complex blocks
like the sequential logic automat ATMT implementing the SFC standard (Sequential
Function Charts, formerly Grafcet).

ARC — Data archiving
This sublibrary contains blocks for alarms generation and blocks for storing trend
data directly on the target device.

PARAM - Parameter handling
This sublibrary contains blocks for parameter handling, namely saving, loading
and remote manipulation with parameters.

MODEL - Dynamic systems modeling

The REXYGEN system can also be used for creating real-time mathematical models
of dynamic systems. The function blocks of this sublibrary were developed for such
cases.

MATRIX — Working with matrix and vector data
Function blocks for handling vector and matrix data in REXYGEN are includeed
in this sublibrary.

MC _SINGLE - Single-axis motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for single axis motion control.

1.2. THE FUNCTION BLOCK DESCRIPTION FORMAT 15

19 MC _MULTI — Multi-axes motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for motion control in multiple axes.

20 MC_COORD - Coordinated motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for coordinated motion control.

15 SPEC — Special blocks
The most interesting blocks of this sublibrary are the REXLANG and RDC blocks. It is
possible to compile and interpret user algorithms using the REXLANG block, whose
programming language is very similar to the C language (the syntax of the REXLANG
commands is mostly the same as in the C language). The RDC block can be used
for real-time communication between two REXYGEN-enabled target devices.

The individual chapters of this reference guide are not much interconnected, which means
they can be read in almost any order or even only the necessary information for specific
block can be read for understanding the function of that block. The electronic version
of this manual (in the .pdf format) is well-suited for such case as it is equipped with
hypertext bookmarks and contents, which makes the look-up of individual blocks very
easy.

Despite of that it is recommended to read the following subchapter, which describes
the conventions used for description of individual blocks in the rest of this manual.

1.2 The function block description format

The description of each function block consists of several sections (in the following order):
Block Symbol — displays the graphical symbol of the block

Function Description — brief description of the block function, omitting too detailed
information.

Inputs — detailed description of all inputs of the block
Outputs — detailed description of all outputs of the block
Parameters — detailed description of all parameters of the block

Examples — a simple example of the use of the block in the context of other blocks and
optional graph with input and output signals for better understanding of the block
function.

If the block function is obvious, the section Examples is omitted. In case of block with
no input or no output the corresponding section is omitted as well.

The inputs, outputs and parameters description has a tabular form:

16 CHAPTER 1. INTRODUCTION

[nam] Detailed description of the input (output, parameter)
<name>. Mathematical symbol nam on the right side of the
first column is used in the equations in the Function Description
section. It is listed only if it differs from the name more
than typographically. If the variable value is limited to only
enumerated values, the meaning of these values is explained in
this column. [©<def>| [{<min>| [t<max>]

<name> <type>

The meaning of the three columns is quite obvious. The third column contains the
item <type>. The REXYGEN control system supports the types listed in table 1.1. But
the most frequently used types are Bool for Boolean variables, Long (I32) for integer
variables and Double (F64) for real variables (in floating point arithmetics).

Each described variable (input, output or parameter) has a default value <def> in
the REXYGEN system, which is preceded by the ® symbol. Also it has upper and lower
limits, preceded by the symbols | and 1 respectively. All these three values are optional
(marked by [|). If the value ®<def> is not listed in the second column, it is equal to
zero. If the values of [<min> and/or f<max> are missing, the limits are given by the the
minimum and/or maximum of the corresponding type, see table 1.1

Type Meaning Minimum Maximum
Bool Boolean value 0 or 1 0 1
Byte (U8) 8-bit integer number without the sign 0 255
Short (I16) 16-bit integer number with the sign -32768 32767
Long (I32) 32-bit integer number with the sign -2147483648 | 2147483647
Large (I64) 64-bit integer number with the sign —9.2234 - 108 | 9.2234 - 1018
Word (U16) 16-bit integer number without the sign 0 65535
DWord (U32) 32-bit integer number without the sign 0 | 4294967295
Float (F32) | 32-bit real number in floating point arithmetics —3.4-10%8 3.4-10%
Double (F64) | 64-bit real number in floating point arithmetics —1.7-10308 1.7-10398
String character string

Table 1.1: Types of variables in the REXYGEN system.

1.3 Conventions for variables, blocks and subsystems nam-
ing

Several conventions are used to simplify the use of the REXYGEN control system. All
used variable types were defined in the preceding chapter. The term variable refers to
function block inputs, outputs and parameters in this chapter. The majority of the blocks
uses only the following three types:

"Precise range of the Large data type is -9223372036854775808 to 9223372036854775807.

1.4. THE SIGNAL QUALITY CORRESPONDING WITH OPC 17

Bool — for two-state logic variables, e.g. on/off, yes/no or true/false. The logic one (yes,
true, on, 1) is referred to as on in this manual. Similarly the logic zero (no, false,
off, 0) is represented by off. This holds also for REXYGEN Studio. Other tools and
3rd party software may display these values as 1 for on and 0 for off. The names
of logic variables consist of uppercase letters, e.g. RUN, YCN, R1, UP, etc.

Long (I32) — for integer values, e.g. set of parameters ID, length of trend buffer, type
of generated signal, error code, counter output, etc. The names of integer variables
use usually lowercase letters and the initial character (always lowercase) is in most
cases {i,k,1,mn, or o}, e.g. ips, 1, isig, iE, etc. But several exceptions to this
rule exist, e.g. cnt in the COUNT block, btype, ptypel, pfac and afac in the TRND
block, etc.

Double (F64) — for floating point values (real numbers), e.g. gain, saturation limits,
results of the majority of math functions, PID controller parameters, time interval
lengths in seconds, etc. The names of floating point variables use only lowercase
letters, e.g. hilim, y, ti, tt.

The function block names in the REXYGEN system use uppercase letters, numbers
and the ?_? (underscore) character. It is recommended to append a lowercase user-defined
string to the standard block name when creating user instances of function blocks.

It is explicitly not recommended to use diacritic and special characters like spaces,
CR (end of line), punctuation, operators, etc. in the user-defined names. The use of such
characters limits the transferability to various platforms and it can lead to incompre-
hension. The names are checked by the REXYGEN Compiler compiler which generates
warnings if inappropriate characters are found.

1.4 The signal quality corresponding with OPC

Every signal (input, output, parameter) in the REXYGEN system has the so-called quality
flags in addition to its own value of corresponding type (table 1.1). The quality flags in
the REXYGEN system correspond with the OPC (OLE for Process Control) specification
[1]. They can be represented by one byte, whose structure is explained in the table 1.2.

Bit number 7 6 5 4 3 2 1 0
Bit weight 128 64 | 32 16 8 4 2 1
Bit field Quality Substatus Limits

Q Q S S S S L L
BAD 0 0 S S S S L L
UNCERTAIN 0 1 S S S S L L
not used in OPC | 1 0 S S S S L L
GOOD 1 1 S S S S L L

Table 1.2: The quality flags structure

18 CHAPTER 1. INTRODUCTION

The basic quality type is determined by the QQ flags in the two most important
bits. Based on these the quality is distinguished between GOOD, UNCERTAIN and BAD. The
four SSSS bits provide more detailed information about the signal. They have different
meaning for each basic quality. The two least significant bits LL inform whether the
value exceeded its limits or if it is constant. Additional details and the meaning of all
bits can be found in [1], chapter 6.8.

Chapter 2

EXEC — Real-time executive

configuration
Contents
ARC — The REXYGEN system archive 20
EXEC — Real-time executive ¢ o v vt v vt v e 22
HMI — Human-Machine Interface Configuration 24
INFO — Description of Algorithm 26
I0DRV — The REXYGEN system input/output driver 27
I0TASK — Driver-triggered task of the REXYGEN system 29
LPBRK —Loop break ¢ v v v v vttt v v vt v oo oo 30
MODULE — Extension module of the REXYGEN system 31
0SCALL — Operating system calls, 32
PROJECT — Additional Project Settings ¢ v v v v v v v v v 33
QTASK — Quick task of the REXYGEN system 34
SLEEP — Timing in Simulink, 35
SRTF — Set run-time flags . . . « v v v v ¢t v v v v v v v et v v v e 36
SYSEVENT — * Read system logo 38
SYSLOG — Write system log, 39
TASK — Standard task of the REXYGEN system 40
TIODRV — The REXYGEN system input/output driver with tasks . 42
WWW — Internal Web Server Content 44

19

20 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

ARC — The REXYGEN system archive

Block Symbol Licence: STANDARD
prov_nexth

ARC

Function Description

The ARC block is intended for archives configuration in the REXYGEN control system. The
archives can be used for continuous recording of alarms, events and history trends directly
on the target platform. The output Archives of the EXEC block must be connected to
the prev input of the first archive. The following archives can be added by connecting
the input prev with the preceding archive’s output next. Only one archive block can
be connected to each next output, the output of the last archive remains unconnected.
The resulting archives sequence determines the order of allocation and initialization of
individual archives in the REXYGEN system and also the index of the archive, which
is used in the arc parameter of the archiving blocks (see chapter 10). The archives are
numbered from 1 and the maximum number of archives is limited to 15 (archive no. 0 is
the internal system log).

The atype parameter determines the type of archive from the data-available-after-
restarting point of view. The admissible types depend on the target platform properties,
which can be inspected in the Target tab in the REXYGEN Diagnostics program after
successful connecting to the target device.

Archive consists of sequenced variable-length items (memory and disk space opti-
mization) with a timestamp. Therefore the other parameters are the total archive size in
bytes asize and maximum number of timestamps nmarks for speeding-up the sequential
seeking in the archive.

Input
prev Input for connecting with the next output of the preceding Long (I32)
archive or with the Archives output of the EXEC block in the
case of the first archive
Output
next Output for creating sequences of archives by connecting to the Long (I32)

prev input of the following archive

21

Parameters
atype Archive type ®1 Long (I32)
1..... archive is allocated in the RAM memory (data is
irreversibly lost after restarting the target device)
2 ... archive is allocated in backed-up memory, e.g. CMOS
(data remains available after restarting the target
device)
3 ... archive is allocated on a drive (data remains available
in the file after restarting)
asize Size of the archive in bytes 1266 ©102400 Long (I32)
nmarks Number of time stamps for speeding-up sequential seeking in the Long (I32)
archive 32 720
ldaymax Maximum size of archive per day [bytes] Large (I64)

J1000 12147480000 ©1048576
period Period of writing data to disk [s] ©60.0 Double (F64)

22 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

EXEC — Real-time executive

Block Symbol Licence: STANDARD

Modules

Drivers

Archives

QTask

Level0

Levell

Level2

Level3

EXEC

Function Description

The EXEC block is a cornerstone of the so-called project main file in the .mdl format,
which configures individual subsystems of the REXYGEN system. No similar block can
be found in the Matlab-Simulink system. The EXEC block and all connected configuration
blocks do not implement any mathematic algorithm. Such configuration structure is used
by the REXYGEN Compiler compiler during building of the overall REXYGEN control
system application.

The REXYGEN system configuration consists of modules (Modules), input/output
drivers (Drivers), archive subsystem (Archives) and real-time subsystem, which in-
cludes quick computation tasks (see the QTASK function block description for details)
and four priority levels (LevelO to Level3) for inserting computation tasks (see the
TASK function block description for details).

The base (shortest) period of the application is determined by the tick parameter.
This value is checked by the REXYGEN Compiler compiler as its limits vary by selected
target platform. Generally speaking, the lower period is used, the higher computational
requirements of the REXYGEN system runtime core (RexCore) are.

The periods of individual computation levels (LevelO to Level3) are determined by
multiplying the base period tick by the parameters ntickO to ntick3. Parameters pri0
to pri3 are the logical priorities of corresponding computation levels in the REXYGEN
system. The REXYGEN system uses 32 logical priorities, which are internally mapped to
the target platform operating system dependent priorities. The highest logical priority
of the REXYGEN system is 0, the value 31 means the lowest. Should two tasks with
different priorities run at the same time, the lower priority (higher value) task would be

23

interrupted by the higher priority (lower value) task.

The default priorities pri0O to pri3 reflect the commonly accepted idea that the
"fast" tasks (short sampling period) should have higher priority than the "slow" ones
(the so-called Rate monotonic scheduling). This means that the default priorities need
not to be changed in most cases. Impetuous changes can lead to unpredictable effects!

Outputs

Modules Output for connecting the REXYGEN system expansion modules, Long (I32)
see the MODULE function block description for details

Drivers Output for connecting the REXYGEN system input/output Long (I32)
drivers, see the I0ODRV and TIODRV function block descriptions
for details

Archives Output for archives configuration, see the ARC block Long (I32)

QTask Output for connecting quick tasks with the highest priority and Long (I32)
the shortest period, see the QTASK block

LevelO Computation level for inserting tasks (see the TASK block) with Long (I32)
high priority pri0 and short period determined by the ntickO
parameter

Levell Computation level for inserting tasks with medium priority pril1 Long (I32)

and medium-length period determined by the ntickl parameter

Level2 Computation level for inserting tasks with low priority pri2 and Long (I32)
long period determined by the ntick2 parameter

Level3 Computation level for inserting tasks with the lowest priority Long (I32)
pri3 and the longest period determined by the ntick3 parameter

Parameters

target Tatgateddicearget device OPC - Windows String

tick The base period (tick) of the REXYGEN system core and also the Double (F64)
quick task (QTASK) period (in seconds) (©0.05

ntickO The multiplication tick*ntickO determines the period of tasks Long (I32)
connected to LevelO 1 ®10

ntickl The multiplication tick*ntickl determines the period of tasks Long (I32)
connected to Levell Intick0+1 ©®50

ntick2 The multiplication tick*ntick2 determines the period of tasks Long (I32)
connected to Level2 Jnticki+1 ®100

ntick3 The multiplication tick*ntick3 determines the period of tasks Long (I32)
connected to Level3 Intick2+1 ©1200

prio Priority of all LevelO tasks 13131 ©®5 Long (I32)

pril Priority of all Levell tasks JpriO+1 131 ®9 Long (I32)

pri2 Priority of all Level2 tasks Jprii+l 131 ©13 Long (I32)

pri3 Priority of all Level3 tasks Jpri2+1 131 ©®18 Long (I32)

24 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

HMI — Human-Machine Interface Configuration

Block Symbol Licence: STANDARD
C 1

HMI
Function Description

The HMI block is a so-called "pseudo-block" which stores additional settings and param-
eters related to the Human-Machine Interface (HMI) and the contents of the internal
web server. The only file where the block can be placed is the main project file with a
single EXEC block.

The REXYGEN system currently provides three straightforward methods of how to
create Human-Machine Interface:

e WebWatch is an auto-generated HMI from the REXYGEN Studio development
tool during project compilation. It has similar look, attributes and functions as the
online mode of the REXYGEN Studio development tool. The main difference is that
WebWatch is stored on the target device, is available from the integrated web
server and may be viewed with any modern web browser or any application that is
compatible with HTML, SVG and JavaScript. The WebWatch is a perfect tool
for instant creation of HMI that is suitable for system developers or integrators. It
provides a graphical interaction with almost all signals in the control algorithm.

e WebBuDi, which is an acronym for Web Buttons and Displays, is a simple
JavaScript file with several declarative blocks that describe data points which the
HMI is connected to and assemble a table in which all the data is presented. It
provides a textual interaction with selected signals and is suitable for system de-
velopers and integrators or may serve as a fall-back mode HMI for non-standard
situations.

o RexHMI is a standard SVG file that is edited using REXYGEN HMI Designer. The
REXYGEN HMI Designer is a great tool for creating graphical HMI that is suitable
for operators and other end users.

The IncludeHMI parameter includes or excludes the HMI files from the final binary
form of the project. The HmiDir specifies a path to a directory where the final HMI is
located and from where it is inserted into the binary file during project compilation.
The path may be absolute or relative to the project. The GenerateWebWatch specifies
whether a WebWatch HMI should be generated into HniDir during compilation. The
GenerateRexHMI specifies whether a RexHMI and WebBuDi should be generated into
HmiDir during compilation.

The logic of generating and including HMI during project compilation is as follows:

25

1. Delete all contents from HmiDir when GenerateWebWatch or GenerateRexHMI is
specified.

2. Generate RexHMI and WebBuDi from SourceDir into HmiDir if GenerateRexHMI
is enabled. All WebBuDi source files should be named in a *.hmi . js format and
all RexHMLI source files should be named in a *.hmi.svg format. The generated
files are then named *.html.

3. Copy all contents from SourceDir except WebBuDi or RexHMI source files into
HmiDir if IncludeHMI is enabled.

4. Insert HMI from HmiDir into binary configuration if IncludeHMI is enabled.

The block does not have any inputs or outputs. The HMI block itself does not become
a part of the final binary configuration, only the files it points to do. Be careful when
inserting big files or directories as the integrated web server is not designed for mas-
sive data transfers. It is possible to shrink the data by enabling gzip compression. The
compression also reduces amount of data transferred to the client, but decompression
must be performed by the server when a client does not support gzip compression, which
brings additional load on the target device.

For a proper operation of the HMI block the compilation must be launched from the
REXYGEN Studio development tool and the REXYGEN HMI Designer must be installed.

Parameters
IncludeHMI Include HMI files in the project ®on Bool
HmiDir Output folder for HMI files Ohmi String
SourceDir Source directory Ohmisrc String
GenerateWebWatch Generate WebWatch HMI files ®on Bool
GenerateRexHMI Generate HMI from SVG and JS files ®on Bool

RedirectToHMI Web server will automatically redirect to HMI webpage if Bool
enabled otherwise it will serve a standard home page as a starting
page. Gon
Compression Enables data compression in gzip format. Bool

26 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

INFO — Description of Algorithm

Block Symbol Licence: STANDARD

INFO

Function Description

The INFO block is a so-called "pseudo-block” which stores textual information about a
real-time executive. The only file where the block can be placed is a main project file
with a single EXEC block an so it belongs to the EXEC category. The block does not have
any inputs or outputs. The information specified with this block becomes a part of the
final configuration, is stored on the target device and may be seen on different diagnostics
screens but does not have any impact on execution of the control algorithm or target’s
behavior.

Parameters
Title Project title String
Author Project author String
Description Brief description of the project String

Customer Information about a customer String

27

I0ODRV — The REXYGEN system input/output driver

Block Symbol Licence: STANDARD

prev nextp

IODRV

Function Description

The input /output drivers of the REXYGEN system are implemented as extension modules
(see the MODULE block). A module can contain several drivers, which are added to the
REXYGEN system configuration by using the IODRV blocks. The prev input of the block
must be connected with the Drivers output of the EXEC block or with the next output of
a I0DRV block which is already included in the configuration. There can be only one driver
connected to the next output of the I0DRV block. The next output of the last driver in the
configuration remains unconnected. This means that the drivers create a unidirectional
chain which defines the order of initialization and execution of the individual drivers.

Fach driver of the REXYGEN system is identified by its name, which is defined by
the classname parameter (beware, the name is case-sensitive!). If the name of the driver
differs from the name of the module containing the given driver, the module name must
be specified by the module parameter, it is left blank otherwise. Details about these two
parameters can be found in the documentation of the corresponding REXYGEN system
driver.

The majority of drivers stores its own configuration data in files with .rio extension
(REXYGEN Input/Output), whose name is specified by the cfgname parameter. The .rio
files are created in the same directory where the project main file is located (.md1 file with
the EXEC block). Driver is configured (e.g. names of the input/output signals, connection
to physical inputs/outputs, parameters of communication with the input/output device,
etc.) in an embedded editor provided by the driver itself. The editor is opened when the
Configure button is pressed in the parameter dialog of the IODRV block in the REXYGEN
Studio program of the REXYGEN control system. In Matlab/Simulink the editor is opened
upon ticking the "Tick this checkbox to call IOdrv EDIT dialog" checkbox.

The remaining parameters are useful only when the driver implements its own com-
putational task (see the corresponding driver documentation). The factor parameter
defines the driver’s task execution period by multiplying the EXEC block’s tick param-
eter factor times (factor*tick). The stack parameter defines the stack size in bytes.
It is recommended to keep the default setting unless stated otherwise in the driver doc-
umentation. The last parameter pri defines the logical priority of the driver’s task.
Inappropriate priority can influence the overall performance of the control system crit-
ically so it is highly recommended to check the driver documentation and the load of
the control system (drivers, levels and tasks) in the REXYGEN Diagnostics diagnostic
program.

28 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

Input
prev Input for connecting the driver with the Drivers output of the Long (I32)
EXEC block or with the next output of the preceding driver
Output
next Output for connecting to the prev input of the succeeding driver Long (I32)
Parameters
module Name of the module, which includes the input/output driver String
(mandatory only if module name differs from classname)
classname I/O driver class name; case sensitive! ©DrvClass String
cfgname Name of the driver configuration file @iodrv.rio String
factor Multiple of the EXEC block’s tick parameter defining the driver’s Long (I32)
task execution period 11 ®10
stack Stack size of the driver’s task in bytes 11024 ©10240 Long (I32)
pri Logical priority of the driver’s task J1 131 ®3 Long (I32)

timer Driver is a source of time Bool

29

I0TASK — Driver-triggered task of the REXYGEN system

Block Symbol

prev nextp

IOTASK

Function Description

Licence: STANDARD

Standard tasks of the REXYGEN system are integrated into the configuration using the
TASK or QTASK blocks. Such tasks are executed by the system timer, whose tick is
configured by the EXEC block.
But the system timer can be unsuitable in some cases, e.g. when the shortest execution
period is too long or when the task should be executed by an external event (input signal
interrupt) etc. In such a case the IOTASK can be executed directly by the I/O driver
configured by the TIODRV block. The user manual of the given driver provides more
details about the possibility and conditions of using the above mentioned approach.

Input
prev Input for connecting the first task to the Tasks output of the
TIODRV block or for connecting to the previous task’s next output
Output
next Output for sequencing the tasks by connecting to the prev input
of the following task
Parameters
factor Execution factor which can be used to determine the task
execution period, see the user guide of the corresponding I/0
driver o1
stack Stack size [bytes] ©10240
filename Name of the file with the .md1 extension which contains the task

algorithm; in the case filename is not specified, the filename is
given by the name of the IOTASK block in the project main file
(the .mdl extension is attached automatically)

Long (I32)

Long (I32)

Long (I32)

Long (I32)
String

30 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

LPBRK — Loop break

Block Symbol Licence: STANDARD

Function Description

The LPBRK block is an auxiliary block often used in the control schemes consisting of the
REXYGEN system function blocks. The block is usually placed in all feedback loops in
the scheme. Its behavior differs in the REXYGEN system and the Simulink system.

The LPBRK block creates a one-sample delay in the Simulink system. If there exists
a feedback loop without the LPBRK block, the Simulink system detects an algebraic loop
and issues a warning (Matlab version 6.1 and above). The simulation fails after some
time.

The REXYGEN Compiler compiler omits the LPBRK block, the only effect of this block
is the breaking of the feedback loop at the block’s position. If there exists a loop without
the LPBRK block, the REXYGEN Compiler compiler issues a warning and breaks the loop
at an automatically determined position. It is recommended to use the LPBRK block in
all loops to achieve the maximum compatibility between the REXYGEN system and the
Simulink system.

Input

u Input signal Double (F64)

Output

y Output signal Double (F64)

31

MODULE — Extension module of the REXYGEN system

Block Symbol Licence: STANDARD
rev_nexth

MODULE

Function Description

The REXYGEN system has an open architecture thus its functionality can be extended.
Such extension is provided by modules. Each module is identified by its name placed
below the block symbol. The individual modules are added to the project main file by
connecting the prev input with the Modules output of the EXEC block or with the next
output of a MODULE which is already included in the project. There can be only one
module connected to the next output of the MODULE block. The next output of the
last module in the project remains unconnected. This means that the modules create a
unidirectional chain which defines the order of initialization of individual modules.

Input
prev Input for connecting the module with the Modules output of the Long (I32)
EXEC block or with the next output of the preceding module
Output
next Output for connecting to the prev input of the succeeding Long (I32)

module

32 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

0SCALL — Operating system calls

Block Symbol Licence: STANDARD

E p
iE p
OSCALL

TRG

Function Description

The 0SCALL block is intended for executing operating system functions from within the
REXYGEN system. The chosen action is performed upon a rising edge (off—on) at the
TRG input. However, not all actions are supported on individual platforms. The result of
the operation and the possible error code are displayed by the E and iE outputs.

Note that there is also the EPC block available, which allows execution of external
programs.

Input
TRG Trigger of the selected action Bool
Outputs
E Error flag Bool
iE Error code Long (I32)
i, REXYGEN general error
Parameter
action System function to perform ®1 Long (I32)
1 ..., Reboot system
2 ... System shutdown
3 ... System halt
4 Flush disc caches
5 Lock system partition
6 Unlock system partition
T ... Disable internal webserver

8 Enable internal webserver

33

PROJECT — Additional Project Settings

Block Symbol Licence: STANDARD

PROJECT

Function Description

The PROJECT block is a so-called "pseudo-block" which stores additional settings and
parameters related to a project and a real-time executive. The only file where the block
can be placed is a main project file with a single EXEC block an so it belongs to the EXEC
category.

The block does not have any inputs or outputs. The block does not become a part
of the final binary configuration.

Parameters

CompileParams Command-line options which are passed to REXYGEN String
Compiler during project compilation.

SourcesOnTarget Store source files on target device Gon Bool

TargetURL URL address of a target on which the configuration should String
be run. The address is inserted into all connection dialogs
automatically.

LibraryPath Path to libraries referenced in the project. Can be absolute or String
relative to project folder.

34 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

QTASK — Quick task of the REXYGEN system

Block Symbol Licence: STANDARD

QTASK

Function Description

The QTASK block is used for including the so-called quick task with high priority into the
executive of the REXYGEN system. This task is used where the fastest processing of the
input signals is necessary, e.g. digital filtering of input signals corrupted with noise or
immediate processing of switches connected via digital inputs. The quick task is added
into the configuration by connecting the prev input with the EXEC block’s QTask output.
The quick task is initialized before the initialization of the LevelO computation level (see
the TASK block).

There can be only one QTASK block in the REXYGEN control system. It runs with the
logical priority no. 2. The algorithm of the quick task is configured the same way as the
standard TASK, it is a separate .md1 file.

The execution period of the task is given by a multiple of the factor parameter and
the tick of the EXEC block. The task is executed with the shortest period of tick seconds
for factor=1. In that case the system load is the highest. Under all circumstances the
QTASK must be executed within tick seconds, otherwise a real-time executive fatal error
occurs and no other tasks are executed. Therefore the QTASK block must be used with
consideration. The execution time of the block is displayed in the REXYGEN Diagnostics
diagnostic program.

Input
prev Input for connecting the task with the QTask output of the EXEC Long (I32)
block
Parameters
factor Multiple of the EXEC block’s tick parameter defining the quick Long (I32)
task execution period o1
stack Stack size [bytes] ©10240 Long (I32)

filename Name of the file with the .md1l extension which contains the String
quick task algorithm; in the case filename is not specified, the
filename is given by the name of the QTASK block in the project
main file (the .md1 extension is attached automatically)

35

SLEEP — Timing in Simulink

Block Symbol Licence: STANDARD

SLEEP

Function Description

The Matlab/Simulink system works natively in simulation time, which can run faster or
slower than real time, depending on the complexity of the algorithm and the computing
power available. Therefore the SLEEP block must be used when accurate timing and
execution of the algorithm in the Matlab/Simulink system is required. In the REXYGEN
system, timing and execution is provided by system resources (see the EXEC block) and
the SLEEP block is ignored.

In order to perform real-time simulation of the algorithm, the SLEEP block must be
included. It guarantees that the algorithm is executed with the period given by the ts
parameter unless the execution time is longer than the requested period.

The SLEEP block is implemented for Matlab/Simulink running in Microsoft Win-
dows operating system. It is recommended to use periods of 100 ms and above. For the
proper functionality the Solver type’ must be set to fixed-step and discrete (no
continuous states) in the ’Solver’ tab of the ’Simulation parameters’ dialog. Further
the Fixed step size parameter must be equal to the ts parameter of the SLEEP block.
There should be at most one SLEEP block in the whole simulation scheme (including all
subsystems).

Parameter

ts Simulation scheme execution period (in seconds) ®0.1 Double (F64)

36 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

SRTF — Set run-time flags

Block Symbol Licence: ADVANCED

EXDIS
EXOSH E
DGEN
DGRES ;=
DGLOG

SRTF

Function Description

The SRTF block (Set Run-Time Flags) can be used to influence the execution of tasks
, subsystems (sequences) and blocks of the REXYGEN system. This block is not meant
for use in Matlab-Simulink. When describing this block, the term object refers to a
REXYGEN system object running in real-time, i.e. input/output driver, one of the tasks,
subsystem or a simple function block of the REXYGEN system.

All the operations described below affect the object, whose full path is given by
the bname parameter. Should the parameter be left blank (empty string), the operation
applies to the nearest owner of the SRTF object, i.e. the subsystem in which the block is
directly included or the task containing the block.

The run-time flags allow the following operations:

e Disable execution of the object by setting the EXDIS input to on. The execution
can be enabled again by using the input signal EXDIS = off. The EXDIS input sets
the same run-time flag as the Halt/Run button in the upper right corner of the
Workspace tab in the REXYGEN Diagnostics diagnostic program.

e One-shot execution of the object. If the object execution is disabled by the
EXDIS = on input or by the REXYGEN Diagnostics program, it is possible to trigger
one-shot execution by EXOSH = on.

e Enable diagnostics for the given object by DGEN = on. The result is equivalent
to ticking the Enable checkbox in the diagnostic pane of the corresponding tab
(I/0 Driver, Level, Quick Task, Task, I/0 Task, Sequence) in the REXYGEN
Diagnostics program.

o Reset diagnostic data of the given object by DGRES = on. The same flag can
be set by the Reset button in the diagnostic pane of the corresponding tab in the
REXYGEN Diagnostics program. The flag is automatically set back to 0 when the
data reset is performed.

The following table shows the flags available for various objects in the REXYGEN
system.

Inputs

EXDIS
EXOSH
DGEN
DGRES
DLOG

Outputs

E

iE

Parameter

bname

Object type EXDIS EXOSH DGEN DGRES
I/O Driver Vv vV vV V
Level Vv X V vV
Task v v v
Quick Task vV v Vv v
I/O Task vV Vv V vV
Sequence, subsystem V X vV vV
Block v X X X

Disable execution

One-shot execution

Enable diagnostics

Reset diagnostic data
Enable more verbose logging

Error flag
off ... No error
on An error occurred
Error code (for E = on)
0 No error
1 ..., The object specified by the bname parameter was not
found
2 ... REXYGEN system internal error (invalid pointers)
3 ... Flag could not be set (timeout)

Full path to the block/object. Case sensitive. Individual layers
are separated by dots, the object names excluding tasks (TASK,
QTASK) start with the following special characters:

T Computational level, e.g. “0 for Level0

& ... Input/Output Driver, e.g. &WenDrv
Name of the task triggered by input/output driver (I0TASK) has
the form &<driver_name>.<task_name>.

Bool
Bool
Bool
Bool
Bool

Bool

Long (I32)

String

37

38 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

SYSEVENT — * Read system log

Block Symbol Licence: STANDARD

VALID
sEvent
sVal
ival

SYSEVENT

Function Description

The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Parameters
arc Archive to read (0=system log) 10 116 Long (I32)
filter String that item must contain String
idfrom Minimum item ID to show J0 165535 Long (I32)
idto Minimum item ID to show J0 165535 (965655 Long (I32)
lvlfrom Minimum item level to show J0 1255 Long (I32)
lvlto Maximum item level to show J0 1255 ©®255 Long (I32)
Outputs
VALID Output data are valid (actual) Bool
sEvent Whole archive item in JSOM String
sVal Archive item value (string) String

ival Archive item value (integer) Long (I32)

39

SYSLOG — Write system log

Block Symbol Licence: STANDARD

SYSLOG

Function Description

The SYSLOG block is intended for writing any messages to the REXYGEN system log. It
can be used for basic logging of user events. To write, it is necessary to have messages
of the given level enabled in the System Logs Configuration (Target -> System Logs
Configuration -> Function block messages).

Inputs

msg The message you want to save to the log (max. 512 znak) String

vl Level of logged message: Long (I32)
0 Error
1..... Warning
2 ... Info
3 ... Verbose

RUN Writing enable. Writing to the log continues as long as the RUN Bool

input is ON

40 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

TASK — Standard task of the REXYGEN system

Block Symbol Licence: STANDARD
prov_nexth

TASK

Function Description

The overall control algorithm of the REXYGEN system consists of individual tasks. These
are included by using the TASK block. There can be one or more tasks in the control
algorithm. The REXYGEN system contains four main computational levels represented
by the LevelO to Level3 outputs of the EXEC block. The individual tasks are added to
the given computational level <i> by connecting the prev input with the corresponding
Level<i> output or with the next output of a TASK, which is already included in the given
level <i>. There can be only one task connected to the next output of the TASK block.
The next output of the last task in the given level remains unconnected. This means that
the tasks in one level create a unidirectional chain which defines the order of initialization
and execution of the individual tasks of the given level in the REXYGEN system. The
individual levels are ordered from LevelO to Level3 (the QTASK block precedes Level0).

All the tasks of the given level <i> are executed with the same priority given by
the pri<i> parameter of the EXEC block. The execution period of the task is given by a
multiple of the factor parameter and the base tick of the given level <i> ntick<i>xtick
in the EXEC block. The time allocated for the task to execute starts at the start tick and
ends at the stop tick, where the inequality 0 < start < stop <ntick<i> must hold
for the start and stop parameters. The REXYGEN Compiler compiler further checks
whether the stop parameter of the preceding task is less or equal to the stop parameter
of the succeeding task, i.e. the allocated time intervals for individual tasks cannot overlap.
In the case the timing of individual levels is inappropriate, the tasks are interrupted by
tasks and other events with higher priority and might not execute in the allocated time.
In such a case the execution is not aborted but delayed (in contrary to the QTASK block).
The REXYGEN Diagnostics program diagnoses whether the execution delay is occasional
or permanent (the Level and Task tabs).

Input
prev Input for connecting the task with the corresponding Level<i> Long (I32)
output of the EXEC block or with the next output of the preceding
task of the given level
Output
next Output for connecting to the prev input of the succeeding task Long (I32)

in the given level

Parameters

factor

start
stop

stack

filename

Execution factor; multiple of the execution period of the i-th
level of the EXEC block defining the execution period of the task:

factor * tick *ntick<i> o1
Number of tick of the given computational level which should
trigger the task execution J0 Tntick<i> 0
Number of tick of the given computational level by which the
task execution should finish lstart+1 Tntick<i> ®1
Stack size [bytes] ©10240

Name of the file with the .md1 extension which contains the task
algorithm. In the case filename is not specified, the filename is
given by the name of the TASK block in the project main file (the
.md1 extension is attached automatically)

Long (I32)

Long (I32)
Long (I32)

Long (I32)
String

41

42 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

TIODRV — The REXYGEN system input/output driver with
tasks

Block Symbol Licence: STANDARD

next p
prevesie}

TIODRV

Function Description

The TIODRV block is used for configuration of special drivers of the REXYGEN system
which are able to execute tasks defined by the IOTASK blocks. See the corresponding
driver documentation.

The prev input of the IOTASK block must be connected with the Tasks output of
the TIODRV block. If the driver allows so, the next output of a TIODRV block which is
already included in the configuration can be used to add more tasks. The next output of
the last task remains unconnected. On the contrary to standard tasks, the number and
order of the driver’s tasks are not checked by the REXYGEN Compiler compiler but by
the input-output driver itself.

If the driver cannot guarantee periodic execution of some task (e.g. task is triggered
by an external event), a corresponding flag is set for the given task. Such a task cannot
contain blocks which require constant sampling period (e.g. the majority of controllers).
If some of these restricted blocks are used, the executive issues a task execution error,
which can be traced using the REXYGEN Diagnostics program.

Input
prev Input for connecting the driver with the Drivers output of the Long (I32)
EXEC block or with the next output of the preceding driver
Outputs
next Output for connecting to the prev input of the succeeding driver Long (I32)
Tasks The I0TASK blocks executed by the driver are connected to this Long (I132)
output using the prev input
Parameters
module Name of the module, which includes the input/output driver String
(mandatory only if module name differs from classname)
classname Name of the driver class; case sensitive! ®DrvClass String

cfgname Name of the driver configuration file @iodrv.rio String

factor

stack
pri
timer

Multiple of the EXEC block’s tick parameter defining the driver’s
task execution period 31 ®10
Stack size of the driver’s task in bytes 11024 ©10240
Logical priority of the driver’s task 41131 ©3

Driver is a source of time

43

Long (I32)

Long (I32)
Long (I32)
Bool

44 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

WWW — Internal Web Server Content

Block Symbol Licence: STANDARD
L 1

Www

Function Description

The WWW block is a so-called "pseudo-block" which stores additional information about a
contents of an internal web server. The only file where the block can be placed is a main
project file with a single EXEC block an so it belongs to the EXEC category.

The block does not have any inputs or outputs. The block itself does not become
a part of a final binary configuration but the data it points to does. Be careful when
inserting big files or directories as the integrated web server is not optimized for a large
data. It is possible to shrink the data by enabling gzip compression. The compression
also reduces amount of data transferred to the client, but decompression must be per-
formed on the server side when a client does not support gzip compression which brings
additional load on the target device.

Parameters

Source Specifies a source directory or a file name that should be placed String
on the target and should be available via integrated web server
using standard HTTP and/or HTTPS protocol. The path may
be absolute or relative to path of a main project file.

Target Specifies a target directory or a file name on the integrated web String
server.

Compression Enables data compression in gzip format. Bool

Chapter 3

INOUT — Input and output blocks

Contents
Display — Numeric display of input values. 46
From, INSTD — Signal connection or input 47
Goto, OUTSTD — Signal source or output 49
GotoTagVisibility — Visibility of the signal source 51
Inport, Outport — Input and output port. 52
SubSystem — Subsystem block o000 54
INQUAD, INOCT, INHEXD — Multi-input blocks 56
OUTQUAD, OUTOCT, OUTHEXD — Multi-output blocks 57
OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with verification 59
QUTRSTD — Output block with verification 60
QFC — Quality flags coding 0oL, 61
QFD — Quality flags decoding . . . « « v v v v v v i v v e e e e 62
VIN — Validation of the input signal v v 63
VOUT — Validation of the output signal 64

45

46 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Display — Numeric display of input values

Block Symbol Licence: STANDARD

DispValue

Function Description

The DISPLAY block shows input value in a selected format. A suffix may be appended
to the value. An actual value is shown immediately in REXYGEN Studio even without
turning on Watch mode for the block, and the same in WebWatch. Actual conversion of
input into its textual representation is performed on the target device in each Decimation
period so the value displayed may be also read via the REST interface or used in visu-
alization.

Input

u Input signal Unknown

Parameters

Format Format of displayed value ®1 Long (I32)

Best fit

short

long ..

short_e

long_e

bank ..

hex ...

bin ...

det ...

Decimation Value is evaluated in each Decimation period |1 1100000 ®1 Long (I32)
Suffix A string to be appended to the value String

47

From, INSTD — Signal connection or input

Block Symbols Licence: STANDARD
———. [DRV signa] =

Function Description

The two blocks From (signal connection) and INSTD (standard input) share the same
symbol. They are used for referring to another signal, either internal or external.

In the function block library, you can only find the From block. It is converted to the
INSTD block at compile time if necessary. The following rules define how the REXYGEN
Compiler compiler distinguishes between the two block types:

e If the parameter GotoTag contains the __ delimiter (two successive > _’? characters),
then the block is of the INSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRYV type block contained in the main file of the project. The REXYGEN Compiler
compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the corresponding
driver. This name is validated by the driver and in the case of success, an instance
of the INSTD block is created. This instance collects real-time data from the driver
and feeds the data into the control algorithm at each execution of the task it is
included in.

o If there is no __ delimiter in the GotoTag parameter, the block is of type From.
A matching Goto block with the same GotoTag parameter and required visibility
given by the TagVisibility parameter (see the Goto block description) is searched.
In case it is not found, the REXYGEN Compiler compiler issues a warning and
deletes the From block. Otherwise an "invisible" connection is created between the
corresponding blocks. The From block is removed also in this case and thus it is

not contained in the resulting control system configuration.

In the case of INSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

E.g. the first digital input of a Modbus I/O device might be referenced by MBM__DI1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding I/O driver.

48 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the flag MBM__DI<id> will refer to digital input 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

Output

value Signal coming from I/O driver or Goto block. The type of output Unknown
is determined by the type of the signal which is being referred
by the GotoTag parameter.

Parameter

GotoTag Reference to a Goto block with the same GotoTag parameter, String
which should be connected with the From block or a reference to
input signal of the REXYGEN I/O driver, which should provide
data through the block’s output.

49

Goto, OUTSTD — Signal source or output

Block Symbols Licence: STANDARD
]

Function Description

The two blocks Goto (signal source) and OUTSTD (standard output) share the same sym-
bol. They are used for providing signals, either internal or external.

In the function block library, you can only find the Goto block. It is converted to the
OUTSTD block at compile time if necessary. The following rules define how the REXYGEN
Compiler compiler distinguishes between the two block types:

e If the parameter GotoTag contains the __ delimiter (two successive > _’? characters),
then the block is of the QUTSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRYV type block contained in the main file of the project. The REXYGEN Compiler
compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the appropriate driver.
This name is validated by the driver and in the case of success, an instance of the
QUTSTD block is created. This instance collects real-time data from the driver and
feeds the data into the control algorithm at each execution of the task it is included
in.

o If there is no __ delimiter in the GotoTag parameter, the block is of type Goto. A
matching From block with the same GotoTag parameter for which the Goto block is
visible is searched. In case it is not found, the REXYGEN Compiler compiler issues a
warning and deletes the Goto block. Otherwise an "invisible" connection is created
between the corresponding blocks. The Goto block is removed also in this case thus
it is not contained in the resulting control system configuration.

The other parameter of the Goto block defines the visibility of the block within the
given .md1 file. The TagVisibility parameter can be local, global or scoped, whose
meaning is explained in the table below. This parameter is ignored if the block is compiled
as the QUTSTD block.

In the case of DUTSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

50 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

E.g. the first digital output of a Modbus I/O device might be referenced by MBM__DO1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding 1/O driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the flag MBM__D0<id> will refer to digital output 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

Input
value Signal going to I/O driver or From block. In case of connection to Unknown
an I/0O driver, the type of input is determined by the I/O driver
from the GotoTag parameter.
Parameters
GotoTag Reference to a From block with the same GotoTag parameter, String

which should be connected with the Goto block or a reference
to output signal of the REXYGEN control system driver, which
should send the data from block input to the process.
TagVisibility Visibility (availability) of the block within the .mdl file. String
Defines conditions under which the two corresponding Goto and
From blocks are reciprocally available: ®local
local the two blocks must be in the same subsystem
global blocks can be anywhere in the given task (.md1 file)
scoped the From block must be placed in the same
subsystem or in any lower hierarchical level below the
GotoTagVisibility block with the same GotoTag
parameter

ol

GotoTagVisibility — Visibility of the signal source

Block Symbol Licence: STANDARD

GotoTagVisibility

Function Description

The GotoTagVisibility blocks specify the visibility of the Goto blocks with scoped vis-
ibility. The symbol (tag) defined in the Goto block by the GotoTag parameter is available
for all From blocks in the subsystem which contains the appropriate GotoTagVisibility
block and also in all subsystems below in the hierarchy.

The GotoTagVisibility block is required only for Goto blocks whose TagVisibility
parameter is set to scoped. There is no need for the GotoTagVisibility block for local
or global visibility.

The GotoTagVisibility block is used only during project compilation by the REXY-
GEN Compiler compiler. It is not included in the binary configuration file for real-time
execution.

Parameter

GotoTag Reference to a Goto block with the GotoTag parameter, String
whose visibility is defined by the position of this block
(GotoTagVisibility)

52 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Inport, Outport — Input and output port

Block Symbols Licence: STANDARD
>

Inport Outport

Function Description

The Inport and Outport blocks are used for connecting signals over individual hierar-
chical levels. There are two possible ways to use these blocks in the REXYGEN system:

1. To connect inputs and outputs of the subsystem. The blocks create an interface
between the symbol of the subsystem and its inner algorithm (sequence of blocks
contained in the subsystem). The Inport or Outport blocks are located inside the
subsystem, the name of the given port is displayed in the subsystem symbol in the
upper hierarchy level.

2. To provide connection between various tasks. The port blocks are located in the
highest hierarchy level of the given task (.mdl file) in this case. The connection
of Inport and Outport blocks in various tasks is checked and created by the
REXYGEN Compiler compiler.

The ordering of the blocks to be connected is based on the Port parameter of the
given block. The numberings of the input and output ports are independent on each
other. The numbering is automatic in REXYGEN Studio and it starts at 1. The numbers
of ports must be unique in the given hierarchy level, in case of manual modification of
the port number the other ports are re-numbered automatically. Be aware that after
re-numbering in an already connected subsystem the inputs (or outputs) in the upper
hierarchy level are re-ordered, which results in probably unintended change in signal
mapping!

Input

value Value going to the output pin or Inport Unknown
Output

value Value coming from the input pin or Outport Unknown
Parameters

Port Ordering of the Inport or Qutport pins Long (132)

OutDataTypeStr Data type of item

Inherit: auto
double
single
uint8
int16
uint16
int32
uint32
boolean
float
int64
string
array

String

23

o4 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

SubSystem — Subsystem block

Block Symbol Licence: STANDARD

SubSystem

Function Description

The SubSystem block is a cornerstone of hierarchical organization of block diagrams in
REXYGEN. A subsystem is a container for a group of function blocks and their con-
nections, which then appear as a single block. Nesting of subsystems is allowed, i.e. a
subsystem can include additional subsystems.

The runtime core or REXYGEN executes the subsystem as an ordered sequence of
blocks. Therefore the subsystem is sometimes referred to as sequence. All blocks from
the surroundings of the subsystem are executed strictly before or strictly after the whole
subsystem is executed.

CNR_myvaluel My_s

Subsystems are also used for creating user-defined reusable components, which are
then placed in user libraries.

A library reference can be distinguished from a standard subsystem by the style of
the upper border.

Standard subsystemn Library reference
ul outl ul outl
u2 u2
SW out2 SW out2
MyBlod2 MyBlod1

Please refer to [2] for details on using subsystems and creating reusable components
in REXYGEN.

Also see examples 0101-02 and 0101-03 demonstrating the use of subsystems. The
examples are included in REXYGEN Studio.

Inputs

The ordering and names of the inputs are given by the numbers and names of the Inport
blocks contained within the subsystem. See REXYGEN Studio manual [2] for details.

Outputs

29

The ordering and names of the outputs are given by the numbers and names of the
Outport blocks contained within the subsystem. See REXYGEN Studio manual [2] for
details.

Parameters

The parameters of the subsystem are defined by the so-called subsystem mask. See
REXYGEN Studio manual |2] for details.

56 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

INQUAD, INOCT, INHEXD — Multi-input blocks

Block Symbols Licence: STANDARD

val0
vall
val2
val3
val4
val5
valé
val7
val8
val9

val10
vall
val0 p val12
vall p val13
val2 p val14
val3 p val1s

INQUAD INHEXD

Function Description

The REXYGEN system allows not only reading of a single input signal but also simulta-
neous reading of multiple signals through just one block (for example all signals from one
module or plug-in board). The blocks INQUAD, INOCT and INHEXD are designed for these
purposes. They differ only in the maximum number of signals (4, 8 and 16, respectively).

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
E.g. the digital inputs of a Modbus I/O device might be referenced by MBM__DI. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for data acquisition through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are read simultane-
ously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the name MBM__module<id> will refer to module 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

Outputs

vali Input signals fed into the control algorithm through Unknown
input/output drivers. The type and location of individual
signals is described in the user manual for the given driver.

o7

QUTQUAD, OUTOCT, OUTHEXD — Multi-output blocks

Block Symbols Licence: STANDARD

valo
val1
val2
val3
val4
val5
val6
val7
val8
val9
val10
vall1
val12
val13
val2 val14
val3 val1s

OUTQUAD OUTOCT OUTHEXD

val0
val1

Function Description

The REXYGEN system allows not only writing of a single output signal but also simul-
taneous writing of multiple signals through just one block (for example all signals of
one module or plug-in board). The blocks OUTQUAD, OUTOCT and OUTHEXD are designed
for these purposes. They differ only in the maximum number of signals (4, 8 and 16,
respectively). These blocks are not included in the RexLib function block library for
Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks. E.g.
the digital outputs of a Modbus I/O device might be referenced by MBM__DO. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for setting the outputs through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are written simulta-
neously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver signals.
This is useful inside subsystems where this placeholder is replaced by the value of sub-
system parameter. E.g. the name MBM__module<id> will refer to signals of module 1, 2,
3 etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

o8 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Inputs

vali Signals to be sent to the process via the input/output driver. Unknown
The type and location of individual signals is described in the
user manual for the given driver.

29

OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with veri-
fication

Block Symbols Licence: ADVANCED
val0 raw0
vall raw1
val2 raw2
val3 raw3
val4 raw4
vals rawb
valé raw6
val7 raw7

val0 rawQ val8 raw8
vall raw1 val9 raw9
val2 raw2 val10 raw10
val3 raw3 val11 raw11
val0 raw0 vald raw4 val12 raw12
vall raw1l val5 raw5 val13 raw13
val2 raw2 valé raw6 val14 raw14
val3 raw3 val7 raw7 val15 raw15
OUTRQUAD OUTROCT OUTRHEXD

Function Description

The OUTRQUAD, OUTROCT and OUTRHEXD blocks allow simultaneous writing of multiple
signals, they are similar to the OUTQUAD, OUTOCT and OUTHEXD blocks. Additionally they
provide feedback information about the result of write operation for the given output.

There are two ways to inform the control algorithm about the result of write operation
through the raw: output:

e Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

e Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The rawi outputs are not always refreshed right at the moment of block execution, there
is some delay given by the properties of the driver, communication line and/or target
platform.

Inputs
vali Output signals defined by the control algorithm through the Unknown
input/output driver. The type and location of individual signals
is described in the user manual for the given driver.
Outputs
rawi Feedback information about the write operation result. The type Unknown

and meaning of individual signals is described in the user manual
for the given driver.

60 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

OUTRSTD — Output block with verification

Block Symbol Licence: ADVANCED

OUTRSTD

Function Description

The OUTRSTD block is similar to the OUTSTD block. Additionally it provides feedback
information about the result of write operation for the output signal.

There are two ways to inform the control algorithm about the result of write operation
through the raw output:

e Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

e Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The raw outputs is not refreshed right at the moment of block execution, there is some
delay given by the properties of the driver, communication line and/or target platform.

Input
value Output signal defined by the control algorithm through the Unknown
input/output driver. The type and naming of the signal is
described in the user manual for the given driver.
Output
raw Feedback information about the write operation result. The type Unknown

and meaning of the signal is described in the user manual for the
given driver.

61

QFC — Quality flags coding

Block Symbol Licence: ADVANCED

iq
is igf p
il

QFC

Function Description

The QFC block creates the resulting signal igf representing the quality flags by combining
three components iq, is and i1. The quality flags are part of each input or output signal
in the REXYGEN system. Further details about quality flags can be found in chapter 1.4
of this manual. The RexLib function block library for Matlab-Simulink does not use any
quality flags.

It is possible to use the QFC block together with the VOUT block to force arbitrary
quality flags for a given signal. Reversed function to the QFC block is performed by the
QFD block.

Inputs
iq Basic quality type flags, see table 1.2, page 17 Long (I32)
is Substatus flags, see [1] Long (I32)
il Limits flags, see [1] Long (I32)
Output

iqf Bit combination of the iq, is and il input signals Long (I32)

62 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

QFD — Quality flags decoding

Block Symbol Licence: ADVANCED

iq p
igf isp
ilp

QFD

Function Description

The QFD decomposes quality flags to individual components iq, is and il. The quality
flags are part of each input or output signal in the REXYGEN system. Further details
about quality flags can be found in chapter 1.4 of this manual. The RexLib function block
library for Matlab-Simulink does not use any quality flags.

It is possible to use the QFD block together with the VIN block for detailed processing
of quality flags of a given signal. Reversed function to the QFD block is performed by the
QFC block.

Input
iqf Quality flags to be decomposed to iq, is and il components Long (I32)
Outputs
iq Basic quality type flags, see table 1.2, page 17 Long (I32)
is Substatus flags, see [1] Long (I32)

il Limits flags, see [1] Long (I32)

63

VIN — Validation of the input signal

Block Symbol Licence: ADVANCED

¥g
sv igf
VIN

Function Description

The VIN block can be used for verification of the input signal quality in the REXYGEN
system. Further details about quality flags can be found in chapter 1.4 of this manual.

The block continuously separates the quality flags from the input u and feeds them to
the iqf output. Based on these quality flags and the GU parameter (Good if Uncertain),
the input signals are processed in the following manner:

e For GU = off the output QG is set to on if the quality is GOOD. It is set to QG = off
in case of BAD or UNCERTAIN quality.

e For GU = on the output QG is set to onif the quality is GOOD or UNCERTAIN. It is set
to QG = off only in case of BAD quality.

The output yg is equal to the u input if QG = on. Otherwise it is set to yg = sv
(substitution variable).

Inputs
u Input signal whose quality is assessed. The type of the signal is Unknown
determined upon the connected signal.
sV Substitute value for an error case Unknown
Outputs
Vg Validated output signal (yg = u for QG = on or yg = sv for Unknown
QG = off)
QG Indicator of input signal acceptability Bool
iqf Complete quality flag separated from the u input signal Long (I32)
Parameter
GU Acceptability of UNCERTAIN quality Bool
off ... Uncertain quality unacceptable

on Uncertain quality acceptable

64 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

VOUT — Validation of the output signal

Block Symbol Licence: ADVANCED

u
iqf yqp

VOUT

Function Description

It is possible to use the VOUT block to force arbitrary quality flags for a given signal. The
desired quality flags are given by the input signal iqf. Further details about quality flags
can be found in chapter 1.4 of this manual.

Inputs
u Input signal whose quality flags are being replaced. The type of Unknown
the signal is determined upon the connected signal.
iqf Desired quality flags Long (I32)
Output
yaq Resulting signal composed from input u and quality flags given Unknown

by the igf input

Chapter 4

MATH — Math blocks

Contents
ABS_ — Absolute value oo oo o oL 67
ADD — Addition of two signals v v i it e et e e e 68
ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition 69
CNB — Boolean (logic) constant, 70
CNE — Enumeration constant 71
CNI —Integer constant 72
CNR —Realconstant00000iiieee.n. 73
DIF_ — Difference i i ittt e 74
DIV — Division of two signals . . .« v v v v vt v v v v v vt o v 0 v 75
EAS — Extended addition and subtraction 76
EMD — Extended multiplication and division 7T
FNX — Evaluation of single-variable function 78
FNXY — Evaluation of two-variables function 80
GAIN — Multiplication by aconstant 82
GRADS — Gradient search optimization ¢ oo 83
IADD — Integer addition 0. 85
ISUB — Integer subtraction v v v vt e v v v v oo o oo 87
IMUL — Integer multiplication 88
IDIV — Integer division o oo 90
IMOD — Remainder after integer division « v v v v v v ¢ o o & 91
LIN — Linear interpolation, ..., 92
MUL — Multiplication of two signals ¢ ¢« v v v v v v v v v v v 93
POL — Polynomial evaluationttt v v vt oo oo 94
REC — Reciprocal value 95
REL — Relational operator . . . « « v v v v v v e v v v 0 ot o o v o v 96
RTOI — Real to integer number conversion 97

65

66

CHAPTER 4. MATH - MATH BLOCKS

SQR —Square value v v v v vttt e e e e e e e e e e e e e 98
SQRT_ — Square root ¢ v v v it v it e e e e e e e 99
SUB — Subtraction of two signals 100

67

ABS_ — Absolute value

Block Symbol Licence: STANDARD

A

ABS_

Function Description

The ABS_ block computes the absolute value of the analog input signal u. The output y
is equal to the absolute value of the input and the sgn output denotes the sign of the
input signal.

—1, foru <0,
sgn = 0, foru=20,
1, foru>0.
Input
u Analog input of the block Double (F64)
Outputs
y Absolute value of the input signal Double (F64)

sgn Indication of the input signal sign Long (I32)

68 CHAPTER 4. MATH - MATH BLOCKS

ADD — Addition of two signals

Block Symbol Licence: STANDARD

w2 Yy
ADD

Function Description

The ADD blocks sums two analog input signals. The output is given by
y =ul +u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Output

y Sum of the input signals Double (F64)

69

ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition

Block Symbols Licence: STANDARD

u2
u3 Yp
u4

ADDQUAD ADDOCT ADDHEXD

Function Description

The ADDQUAD, ADDOCT and ADDHEXD blocks sum (or subtract) up to 16 input signals. The
nl parameter defines the inputs which are subtracted instead of adding. For an empty nl
parameter the block output is given by y =ul +u2+u3+ud+us+u6+u7+...+ul6.
For e.g. n1=2,5,7, the block implements the function y = ul —u2 +u3+u4 —u5+u6 —
u7 + ...+ ulé6.

Note that the ADD and SUB blocks are available for simple addition and subtraction
operations.

Inputs

ul..ulé Analog input signals Double (F64)
Output

y Resulting value Double (F64)
Parameter

nl List of signals to subtract instead of adding. The format of the list Long (I32)

is e.g. 1,3..5,8. Third-party programs (Simulink, OPC clients
etc.) work with an integer number, which is a binary mask, i.e.
157 (binary 10011101) in the mentioned case.

70 CHAPTER 4. MATH - MATH BLOCKS

CNB — Boolean (logic) constant

Block Symbol Licence: STANDARD

CNB
Function Description

The CNB block stands for a Boolean (logic) constant.

Output

Y Logical output of the block Bool
Parameter

YCN Boolean constant ®on Bool

off ... Disabled
on Enabled

71

CNE — Enumeration constant

Block Symbol Licence: STANDARD

Function Description

The CNE block allows selection of a constant from a predefined popup list. The popup list
of constants is defined by the pupstr string, whose syntax is obvious from the default
value shown below. The output value corresponds to the number at the beginning of the
selected item. In case the pupstr string format is invalid, the output is set to 0.

There is a library called CNEs in Simulink, which contains CNE blocks with the most
common lists of constants.

Parameters
yenum Enumeration constant ®1: option A String
pupstr Popup list definition String
®1: option A|2: option B|3: option C
Output

iy Integer output of the block Long (I32)

72 CHAPTER 4. MATH - MATH BLOCKS

CNI — Integer constant

Block Symbol Licence: STANDARD

CNI

Function Description

The CNI block stands for an integer constant.
Output

iy Integer output of the block Long (I32)

Parameter

icn Integer constant ®1 Long (I32)

CNR — Real constant

Block Symbol

CNR
Function Description

The CNR block stands for a real constant.
Output

y Analog output of the block
Parameter
ycn Real constant

73

Licence: STANDARD

Double (F64)

®1.0 Double (F64)

74 CHAPTER 4. MATH - MATH BLOCKS

DIF_ — Difference

Block Symbol Licence: STANDARD
[0 yb

DIF_

Function Description
The DIF_ block differentiates the input signal u according to the following formula
Y = Uk — Uk—1,

where u; = u, y, = y and ug_; is the value of input u in the previous cycle (delay T,
which is the execution period of the block).

Input

u Analog input of the block Double (F64)
Output

y Difference of the input signal Double (F64)
Parameters

ISSF Zero output at start-up Bool

off ... In the first cycle the output will be y = u.
on Zero output in the first cycle, y = 0.

DIV — Division of two signals

Block Symbol

u2Ep

DIV

Function Description

75

Licence: STANDARD

The DIV block divides two analog input signals y = ul/u2. In case u2 = 0, the output E

is set to onand the output y is substituted by y = yerr.

Inputs

ul First analog input of the block

u?2 Second analog input of the block
Outputs

y Quotient of the inputs

E Error flag — division by zero
Parameter

yerr Substitute value for an error case

1.0

Double
Double

Double
Bool

Double

(F64)
(F64)

(F64)

(F64)

76 CHAPTER 4. MATH - MATH BLOCKS

EAS — Extended addition and subtraction

Block Symbol Licence: STANDARD

ul

u3 Yy
u4

EAS

Function Description

The EAS block sums input analog signals ul, u2, u3 and u4 with corresponding weights
a, b, ¢ and d. The output y is then given by

y=a*ul +b*xu2+c*xu3+dxud+ y0.

Inputs
ul First analog input of the block Double (F64)
u?2 Second analog input of the block Double (F64)
u3 Third analog input of the block Double (F64)
ud Fourth analog input of the block Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
a Weighting coefficient of the ul input ©®1.0 Double (F64)
b Weighting coefficient of the u2 input ©®1.0 Double (F64)
c Weighting coefficient of the u3 input ®1.0 Double (F64)
d Weighting coefficient of the u4 input ©®1.0 Double (F64)

yo Additive constant (bias) Double (F64)

EMD — Extended multiplication and division

Block Symbol

w Yy
u3
u4 Ep

EMD

Function Description

77

Licence: STANDARD

The EMD block multiplies and divides analog input signals ul, u2, u3 and u4 with corre-

sponding weights a, b, ¢ and d. The output y is then given by

(a*ul 4 a0)(b * u2 + b0)

(c*u3+ c0)(d * ud +d0)’

(4.1)

The output E is set to on in the case that the denominator in the equation (4.1) is equal

to 0 and the output y is substituted by y = yerr.

Inputs

ul First analog input of the block

u2 Second analog input of the block

u3 Third analog input of the block

ud Fourth analog input of the block
Outputs

y Analog output of the block

E Error flag — division by zero
Parameters

a Weighting coefficient of the ul input

a0 Additive constant for uil input

b Weighting coefficient of the u2 input

b0 Additive constant for u2 input

c Weighting coefficient of the u3 input

c0 Additive constant for u3 input

d Weighting coefficient of the u4 input

do Additive constant for u4 input

yerr Substitute value for an error case

1.0

1.0

1.0

1.0

1.0

Double
Double
Double
Double

Double
Bool

Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

78 CHAPTER 4. MATH - MATH BLOCKS

FNX — Evaluation of single-variable function

Block Symbol Licence: STANDARD

FNX

Function Description

The FNX block evaluates basic math functions of single variable. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.

List of functions:

ifn: shortcut | function constraints on u
1: acos arccosine ue< —1.0,1.0 >
2: asin arcsine ue< —1.0,1.0 >
3: atan arctangent -

4: ceil rounding towards the nearest higher integer -

5: cos cosine —

6: cosh hyperbolic cosine -

7: exp exponential function e% -

8: expl0 exponential function 10" -

9: fabs absolute value -

10: floor rounding towards the nearest lower integer -

11: log logarithm u>0

12: logl0 decimal logarithm u>0

13: random | arbitrary number z €< 0,1 > (u independent) -

14: sin sine -

15: sinh hyperbolic sine -

16: sqr square function -

17: sqrt square root u>0

18: srand changes the seed for the random function to u ueN

19: tan tangent -

20: tanh hyperbolic tangent -

Note: All trigonometric functions process data in radians.

The error output is activated (E = on) in the case when the input value u falls out of
its bounds or an error occurs during evaluation of the selected function (implementation
dependent), e.g. square root of negative number. The output is set to substitute value
in such case (y = yerr).

Input
u Analog input of the block
Outputs
y Result of the selected function
E Error flag
Parameters
ifn Function type (see table above)

yerr Substitute value for an error case

o1

79

Double (F64)

Double (F64)
Bool

Long (I32)
Double (F64)

80 CHAPTER 4. MATH - MATH BLOCKS

FNXY — Evaluation of two-variables function

Block Symbol Licence: STANDARD

ul yp
u2Ep

FNXY

Function Description

The FNXY block evaluates basic math functions of two variables. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.

List of functions:

ifn: shortcut | function constraints on ul, u2
1: atan2 arctangent ul/u2 -

2: fmod remainder after division ul/u2 u2 # 0.0

3: pow exponentiation of the inputs y = u1u2 -

The atan2 function result belongs to the interval (—m,). The signs of both inputs
ul a u2 are used to determine the appropriate quadrant.

The fmod function computes the remainder after division ul/u2 such that ul =i -u2 +y,
where ¢ is an integer, the signs of the y output and the ul input are the same and the
following holds for the absolute value of the y output: |y| < |u2|.

The error output is activated (E = on) in the case when the input value u2 does
not meet the constraints or an error occurs during evaluation of the selected function
(implementation dependent), e.g. division by zero. The output is set to substitute value
in such case (y = yerr).

Inputs
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Outputs
y Result of the selected function Double (F64)
E Error flag Bool

off ... No error
on An error occurred

Parameters
ifn Function type (see the table above)
1..... atan2
2 ..., fmod
3 ... pow

yerr Substitute value for an error case

o1

81

Long (I32)

Double (F64)

82 CHAPTER 4. MATH - MATH BLOCKS

GAIN — Multiplication by a constant

Block Symbol Licence: STANDARD

GAIN
Function Description

The GAIN block multiplies the analog input u by a real constant k. The output is then

y = ku.
Input
u Analog input of the block Double (F64)
Output
y Analog output of the block Double (F64)
Parameter

k Gain ®1.0 Double (F64)

83

GRADS — Gradient search optimization

Block Symbol Licence: ADVANCED

f

X
xopt
x0 fopt

BSY
START iter

BRK iE
GRADS

Function Description

The GRADS block performs one-dimensional optimization of the f(x,v) function by gra-
dient method, where x € (xmin,xmax) is the optimized variable and v is an arbitrary
vector variable. It is assumed that the value of the function f(x,v) for given x at time
k is enumerated and fed to the f input at time k£ + n % Tg, where Tg is the execution
period of the GRADS block. This means that the individual optimization iterations have
a period of n * Tg. The length of step of the gradient method is given by

grad = (f;—£;-1)* (dz),_,

(dx);, = —gamma * grad,

where ¢ stands for ¢-th iteration. The step size is restricted to lie within the interval
(dmin, dmax). The value of the optimized variable for the next iteration is given by

Ti41 = X4 + (dCC)Z

Inputs
f Value of the optimized f(.) for given variable x Double (F64)
x0 Optimization starting point Double (F64)
START Starting signal (rising edge) Bool
BRK Termination signal Bool
Outputs
X Current value of the optimized variable Double (F64)
xopt Resulting optimal value of the x variable Double (F64)
fopt Resulting optimal value of the function f(x,v) Double (F64)
BSY Indicator of running optimization Bool
iter Number of current iteration Long (I32)

E Error flag Bool

84

iE

Parameters

Xxmin
xmax

gamma

do
dmin
dmax
n

itermax

CHAPTER 4. MATH - MATH BLOCKS

Error code
1 ..., x ¢< xmin, xmax >
2 ..., X = Xmin or X = xmax

Lower limit for the x variable

Upper limit for the x variable 10.0
Coefficient for determining the step size of the gradient
optimization method 0.3
Initial step size 0.05
Minimum step size ©0.01
Maximum step size 1.0
Iteration period (in sampling periods T’s) ®100
Maximum number of iterations 20

Long (I32)

Double
Double
Double

Double
Double
Double

(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

Long (I32)
Long (I32)

85

IADD — Integer addition

Block Symbol Licence: STANDARD

i2 Ep
IADD

Function Description

The IADD block sums two integer input signals n = i1 4 i2. The range of integer num-
bers in a computer is always restricted by the variable type. This block uses the vtype
parameter to specify the type. If the sum fits in the range of the given type, the result
is the ordinary sum. In the other cases the result depends on the SAT parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 + 2770 = -32766).

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 30000
+ 2770 = 32767).

Inputs
i1 First integer input of the block }-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block }-9.22E+18 19.22E+18 Long (I32)
Outputs
n Integer sum of the input signals Long (I32)
E Error flag Bool
off ... No error
on An error occurred
Parameters
vtype Numeric type ®4 Long (I32)
2 ... Byte (UR)
3 ... Short (116)
4 ... Long (132)
5 Word (U16)

6 DWord (U32)

10 Large (I64)

86

SAT

Saturation (overflow) checking

CHAPTER 4. MATH - MATH BLOCKS

Bool

off ... Overflow is not checked

on Overflow is checked

ISUB — Integer subtraction

Block Symbol

i2 Ep
ISuB

Function Description

87

Licence: STANDARD

The ISUB block subtracts two integer input signals n = i1 — i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the difference fits in the range of the given type,
the result is the ordinary sum. In the other cases the result depends on the SAT parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 - -2770 = -32766).

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 30000
- -2770 = 32767).

Inputs
i1
i2

Parameters

vtype

SAT

Outputs

First integer input of the block }-9.22E+18 19.22E+18 Long
Second integer input of the block }-9.22E+18 19.22E+18 Long
Numeric type ®4 Long

2 ... Byte (range 0 ... 255)

3 ... Short (range -32768 ... 32767)

4 Long (range -2147483648 ... 2147483647)

5 Word (range 0 ... 65536)

6 DWord (range 0 ... 4294967295)

10 Large (range-9223372036854775808...9223372036854775807)
Saturation (overflow) checking Bool

off ... Overflow is not checked

on Overflow is checked
Integer difference between the input signals Long
Error flag Bool

off ... No error

on An error occurred

(I32)
(132)

(132)

(132)

88 CHAPTER 4. MATH - MATH BLOCKS

IMUL — Integer multiplication

Block Symbol Licence: STANDARD

Function Description

The IMUL block multiplies two integer input signals n = il % 12. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the multiple fits in the range of the given type,
the result is the ordinary multiple. In the other cases the result depends on the SAT
parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 2000 * 20 = -25536).

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 2000
* 20 = 32767).

Inputs
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Parameters
vtype Numeric type ®4 Long (I32)
2 ... Byte (UR)
3 ... Short (I16)
4 ... Long (I32)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
SAT Saturation (overflow) checking Bool
off ... Overflow is not checked

on Overflow is checked

Outputs

]

Integer product of the input signals
Error flag

off ... No error

on An error occurred

Long (I32)
Bool

89

90

IDIV — Integer division

Block Symbol

Function Description

CHAPTER 4. MATH - MATH BLOCKS

Licence: STANDARD

The IDIV block performs an integer division of two integer input signals, n = il + 12,
where + stands for integer division operator. If the ordinary (non-integer, normal) quo-
tient of the two operands is an integer number, the result of integer division is the same.
In other cases the resulting value is obtained by trimming the non-integer quotient’s
decimals (i.e. rounding towards lower integer number). In case i2 = 0, the output E is
set to on and the output n is substituted by n = nerr.

Inputs
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Outputs
n Integer quotient of the inputs Long (I32)
E Error flag — division by zero Bool
Parameters
vtype Numeric type ®4 Long (I32)
2 ... Byte
R Short
4 Long
5 Word
6 DWord
10 Large

nerr Substitute value for an error case ®1 Long (I32)

IMOD — Remainder after integer division

Block Symbol

i1 np
i2 Ep

IMOD

Function Description

91

Licence: STANDARD

The IMOD block divides two integer input signals, n = i1%3i2, where % stands for remain-
der after integer division operator (modulo). If both numbers are positive and the divisor
is greater than one, the result is either zero (for commensurable numbers) or a positive
integer lower than the divisor. In the case that one of the numbers is negative, the result
has the sign of the dividend, e.g. 15%10 = 5, 15%(—10) = 5, but (—15)%10 = —5. In
case i2 = 0, the output E is set to on and the output n is substituted by n = nerr.

Inputs
i1 First integer input of the block
i2 Second integer input of the block
Outputs
n Remainder after integer division
E Error flag — division by zero
Parameters
vtype Numeric type
2 ... Byte
3 ... Short
4 Long
5 Word
6 DWord
10 Large
nerr Substitute value for an error case

1-9.22E+18 19.22E+18
1-9.22E+18 19.22E+18

04

o1

Long
Long

Long
Bool

Long

Long

(132)

(132)

(132)

(132)

(132)

92 CHAPTER 4. MATH - MATH BLOCKS

LIN — Linear interpolation

Block Symbol Licence: STANDARD
[0y

LIN

Function Description

The LIN block performs linear interpolation. The following figure illustrates the influence
of the input u and given interpolation points [ul, y1| and [u2, y2| on the output y.

y2
y
y1
U-1 U ué
Input
u Analog input of the block Double (F64)
Output
v Analog output of the block Double (F64)
Parameters
ul x-coordinate of the 1st interpolation node Double (F64)
yi y-coordinate of the 1st interpolation node Double (F64)
u2 x-coordinate of the 2nd interpolation node ®1.0 Double (F64)

y2 y-coordinate of the 2nd interpolation node ®1.0 Double (F64)

93

MUL — Multiplication of two signals

Block Symbol Licence: STANDARD

Function Description

The MUL block multiplies two analog input signals y = ul - u2.

Inputs
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Output

y Product of the input signals Double (F64)

94 CHAPTER 4. MATH - MATH BLOCKS

POL — Polynomial evaluation

Block Symbol Licence: STANDARD
[0y

POL
Function Description
The POL block evaluates the polynomial of the form:

2 4
y =ap+aju—+ asu” + agu3 + aqu” + a5u5 + aﬁu6 + a7u7 + aguS.

The polynomial is internally evaluated by using the Horner scheme to improve the nu-
merical robustness.

Input

u Analog input of the block Double (F64)
Output

y Analog output of the block Double (F64)
Parameters

ai The i-th coefficient of the polynomial, ¢ = 0,1,...,8 Double (F64)

95

REC — Reciprocal value

Block Symbol Licence: STANDARD

REC

Function Description

The REC block computes the reciprocal value of the input signal u. The output is then
y=-
u

In case u = 0, the error indicator is set to E = on and the output is set to the substitu-
tional value y = yerr.

Input

u Analog input of the block Double (F64)
Outputs

y Analog output of the block Double (F64)

E Error flag — division by zero Bool
Parameter

yerr Substitute value for an error case ®1.0 Double (F64)

96 CHAPTER 4. MATH - MATH BLOCKS

REL — Relational operator

Block Symbol Licence: STANDARD
o)

Function Description

The REL block evaluates the binary relation ul o u2 between the values of the input
signals and sets the output Y according to the result of the relation "o". The output
is set to Y = on when relation holds, otherwise it is zero (relation does not hold). The
binary operation codes are listed below.

Inputs
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Output
Y Logical output indicating whether the relation holds Bool
Parameter
irel Relation type ®1 Long (I32)
1 ..., equality (==)
2 ... inequality (!=)
3 ... less than (<)
4 ... greater than (>)
5 less than or equal to (<=)

6 greater than or equal to (>=)

97

RTOI — Real to integer number conversion

Block Symbol Licence: STANDARD

RTOI

Function Description

The RTOI block converts the real number r to a signed integer number i. The resulting
rounded value is defined by:

—2147483648 for r < —2147483648.0
i:= ¢ round(r) for —2147483648.0 < r < 2147483647.0,
2147483647 for r > 2147483647.0

where round(r) stands for rounding to the nearest integer number. The number of the
form n+0.5 (n is integer) is rounded to the integer number with the higher absolute
value, i.e. round(1.5) = 2, round(—2.5) = —3. Note that the numbers —2147483648 and
2147483647 correspond with the lowest and the highest signed number representable in
32-bit format respectively (0x7FFFFFFF and 0x80000000 in hexadecimal form in the C
language).

Input
T Analog input of the block Double (F64)

Output

i Rounded and converted input signal Long (I32)

98 CHAPTER 4. MATH - MATH BLOCKS

SQR — Square value

Block Symbol Licence: STANDARD
[0y

SQR
Function Description

The SQR block raises the input u to the power of 2. The output is then

y = u’.

Input

u Analog input of the block Double (F64)

Output

y Square of the input signal Double (F64)

99

SQRT_ — Square root

Block Symbol Licence: STANDARD

Function Description

The SQRT_ block computes the square root of the input u. The output is then

y =V

In case u < 0, the error indicator is activated (E = on) and the output y is set to the
substitute value y = yerr.

Input
u Analog input of the block Double (F64)
Outputs
y Square root of the input signal Double (F64)
E Error flag Bool
off ... No error
on Square root of negative number
Parameter

yerr Substitute value for an error case ©®1.0 Double (F64)

100 CHAPTER 4. MATH - MATH BLOCKS

SUB — Subtraction of two signals

Block Symbol Licence: STANDARD

w2 Yy
suB

Function Description

The SUB block subtracts two input signals. The output is given by
y =ul —u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs
ul Analog input of the block Double (F64)
u?2 Analog input of the block Double (F64)
Output

y Difference between the two input signals Double (F64)

Chapter 5

ANALOG — Analog signal
processing

Contents
ABSROT — Processing data from absolute position sensor 103
ASW — Switch with automatic selection of input 105
AVG — Moving average filter« v v v vt i it i et e 107
AVS — Motion control unit 000 108
BPF — Band-pass filter 000000, 109
CMP — Comparator with hysteresis. 110
CNDR — Nonlinear conditioner 0.0, 111
DEL — Delay with initialization 113
DELM — Time delayttt ineenenenenenn 114
DER — Derivation, filtering and prediction from the last n+1 samples115
EVAR — Moving mean value and standard deviation 117
INTE — Controlled integrator v v v v v v e v v v v o o o oo 118
KDER — Derivation and filtering of the input signal 120
LPF — Low-pass filter 122
MINMAX — Running minimum and maximum 123
NSCL — Nonlinear scaling factor 124
RDFT — Running discrete Fourier transform 125
RLIM — Rate limiter, 127
S10F2 — One of two analog signals selector v v 128
SAT — Safety analog Input « « « v v v v v ¢t o v v b bt e e e e e 131
SEL — Selector switch for analog signals 134
SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals . . . 135
SHIFTOCT — Data shift register 137
SHLD — Sample and hold 0. 139

102

CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

SINT — Simple Integrator . . . « v v ¢« v v v v s v o o 0 o v s s o o o 140
SPIKE — Spike filter oL oo e 141
SSW—Simple switch 00 0 00 o L. 143
SWR — Selector withramp . . « v v v ¢« v v v v v vt o v v v o e e 144
VDEL — Variable time delay . . . « v v v ¢ v v v v v v v o v v v v v v 145

ZV4IS — Zero vibration input shaper 146

103

ABSROT — Processing data from absolute position sensor

Block Symbol Licence: ADVANCED

y
U irev

MPI
RT oL

ABSROT

Function Description

The ABSROT function block is intended for processing the data from absolute position
sensor on rotary equipment, e.g. a shaft. The absolute sensor has a typical range of 5°
to 355° (or -175° to +175°) but in some cases it is necessary to control the rotation
over a range of more than one revolution. The function block assumes a continuous
position signal, therefore the transition from 355° to 5° in the input signal means that
one revolution has been completed and the angle is in fact 365°.

In the case of long-term unidirectional operation the precision of the estimated po-
sition y deteriorates due to the precision of the double data type. For that case the R1
input is available to reset the position y to the base range of the sensor. If the RESR flag
is set to RESR = on, the irev revolutions counter is also reset by the R1 input. In all cases
it is necessary to reset all accompanying signals (e.g. the sp input of the corresponding
controller).

The MPI output indicates that the absolute sensor reading is near to the middle of
the range, which may be the appropriate time to reset the block. On the other hand, the
OLI output indicates that the sensor reached the so-called dead-angle where it cannot
report valid data.

Inputs
u Signal from the absolute position sensor Double (F64)
R1 Block reset Bool
Outputs
y Position output Double (F64)
irev Number of finished revolutions Long (I32)
MPI Mid-point indicator Bool
OLI Off-limits indicator Bool
Parameters
lolim Lower limit of the sensor reading (©-3.14159265 Double (F64)
hilim Upper limit of the sensor reading (3.14159265 Double (F64)

tol Tolerance for the mid-point indicator ®0.5 Double (F64)

104 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

hys Hysteresis for the mid-point indicator Double (F64)
RESR Flag for resetting the revolutions counter Bool

off ... Reset only the estimated position y
on Reset also the irev revolutions counter

105

ASW — Switch with automatic selection of input

Block Symbol Licence: ADVANCED

ul

u3
Ut osw

ASW

Function Description

The ASW block copies one of the inputs ul, ..., u4 or one of the parameters pi, ..., p4
to the output y. The appropriate input signal is copied to the output as long as the
input signal iSW belongs to the set {1,2,3,4} and the parameters are copied when iSW
belongs to the set {—1,—2, -3, —4} (i.e. y = p1 for iSW = —1, y = u3 for iSW = 3 etc.).
If the iSW input signal differs from any of these values (i.e. iSW = 0 or iSW < —4 or
iSW > 4), the output is set to the value of input or parameter which has changed the
most recently. The signal or parameter is considered changed when it differs by more
than delta from its value at the moment of its last change (i.e. the changes are measured
integrally, not as a difference from the last sample). The following priority order is used
when changes occur simultaneously in more than one signal: p4, p3, p2, pl, u4, u3, u2,
ul. The identifier of input signal or parameter which is copied to the output y is always
available at the oSW output.

The ASW block has one special feature. The updated value of y is copied to all the
parameters pl, ..., p4. This results in all external tools reading the same value y. This is
particularly useful in higher-level systems which use the set&follow method (e.g. a slider
in Iconics Genesis). This feature is not implemented in Simulink as there are no ways to
read the values of inputs by external programs.

ATTENTION! One of the inputs ul, ..., u4 can be delayed by one step when the
block is contained in a loop. This might result in an illusion, that the priority is broken
(the oSW output then shows that the most recently changed signal is the delayed one).
In such a situation the LPBRK block(s) must be used in appropriate positions.

Inputs
ul..u4d Analog input signals to be selected from Double (F64)
isw Active signal or parameter selector Long (I32)
Outputs
y The selected analog signal or parameter Double (F64)

oSW Identifier of the selected signal or parameter Long (I32)

106 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Parameters

delta Threshold for detecting a change ©®1le-06 Double (F64)
pl..p4 Parameters to be selected from Double (F64)

107

AVG — Moving average filter

Block Symbol Licence: STANDARD
[0y

AVG

Function Description

The AVG block computes a moving average from the last n samples according to the
formula

1
Yk = ﬁ(uk +ug—1+ -+ Ug—nt1)-
There is a limitation n < N, where N depends on the implementation.

If the last n samples are not yet known, the average is computed from the samples
available.

Input

u Input signal to be filtered Double (F64)
Output

y Filtered output signal Double (F64)
Parameter

n Number of samples to compute the average from Long (I32)

11 110000000 ®10
nmax Limit for parameter n (used for internal memory allocation) Long (I32)

110 110000000 ©100

108

CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

AVS — Motion control unit

Block Symbol

START a
SET v
am s
dm it
vm RDY
sm BSY

AVS

Function Description

Licence: ADVANCED

The AVS block generates time-optimal trajectory from initial steady position 0 to a final
steady position sm while respecting the constraints on the maximal acceleration am,
maximal deceleration dm and maximal velocity vm. When rising edge (off—on) occurs
at the SET input, the block is initialized for current values of the inputs am, dm, vm and
sm. The RDY output is set to offbefore the first initialization and during the initialization
phase, otherwise it is set to 1. When rising edge (off—on) occurs at the START input, the
block generates the trajectory at the outputs a, v, s and tt, where the signals correspond
to acceleration, velocity, position and time respectively. The BSY output is set to onwhile
the trajectory is being generated, otherwise it is off.

Inputs

START
SET
am
dm
vm
sm

Outputs

tt
RDY

BSY

Starting signal (rising edge)

Initialize/compute the trajectory for the current inputs
Maximal allowed acceleration [m/s?|

Maximal allowed deceleration [m /s?]

Maximum allowed velocity [m/s]

Desired final position [m] (initial position is 0)

Acceleration [m/s?]
Velocity [m/s]
Position [m]

Time [s]

Flag indicating that the block is ready to generate the trajectory

Flag indicating that the trajectory is being generated

Bool
Bool
Double
Double
Double
Double

Double
Double
Double
Double
Bool

Bool

(F64)
(F64)
(F64)
(F64)

(F64)
(F64)
(F64)
(F64)

109

BPF — Band-pass filter

Block Symbol Licence: STANDARD
[0y

BPF
Function Description
The BPF implements a second order filter in the form

B 2as
° a?s? +2tas+ 1’

where a and & are are the block parameters fm and xi respectively. The fm parameter
defines the middle of the frequency transmission band and xi is the relative damping
coefficient.

If ISSF = on, then the state of the filter is set to the steady value at the block
initialization according to the input signal u.

Input
u Input signal to be filtered Double (F64)
Output
y Filtered output signal Double (F64)
Parameters
fm Peak frequency, middle of the frequency transmission band [Hz] Double (F64)
1.0
xi Relative damping coefficient (recommended value 0.5 to 1) Double (F64)
©0.707
ISSF Steady state at start-up flag Bool

off ... Zero initial state
on Initial steady state

110 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

CMP — Comparator with hysteresis

Block Symbol Licence: STANDARD
B

CMP

Function Description

The CMP block compares the inputs ul and u2 with the hysteresis h as follows:

Y. = o,
Y. = hyst(ex), k=0,1,2,...

where
er = ulp — u2y

and

0 for e < —h
hyst(ex) = Yip—1 for ey € (—h,h)
1 for ex >h (e > hfor h =0)

The indexed variables refer to the values of the corresponding signal in the cycle defined
by the index, i.e. Yj,_; denotes the value of output in the previous cycle/step. The value
Y_; is used only once when the block is initialized (k = 0) and the difference of the input
signals ey is within the hysteresis limits.

Inputs

ul First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)
Output

Y Logical output of the block Bool
Parameter

hys Hysteresis 0.5 Double (F64)

111

CNDR — Nonlinear conditioner

Block Symbol Licence: STANDARD

Function Description

The CNDR block can be used for compensation of complex nonlinearities by a piecewise
linear transformation which is depicted below.

is: 0 1 2 n-1 n

Y1

It is important to note that in the case of u < ug or u > w,_1 the output depends on
the SATF parameter.

Input
u Analog input of the block Double (F64)
Outputs
y Analog output of the block Double (F64)
is Active sector of nonlinearity (see the figure above) Long (I32)
Parameters
n Number of (u,y) node pairs ©®6 Long (I32)
SATF Saturation flag ®on Bool

off ... Signal not limitedon Saturation limits active

112 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

up Vector of increasing u-coordinates Double (F64)
©®[0.0 3.9 3.9 9.0 14.5 20.0]

yp Vector of y-coordinates ©[0.0 0.0 15.8 38.4 72.0 115.0] Double (F64)

DEL — Delay with initialization

113

Block Symbol Licence: STANDARD

u

yO RDY
DEL

Function Description

The DEL block implements a delay of the input signal u. The signal is shifted n samples

backwards, i.e.
Yk = Ug—n-

If the last n samples are not yet known, the output is set to

Yk = Yo,

where y, is the initialization input signal. This can happen after restarting the control
system or after resetting the block (R1: off—on—off) and it is indicated by the output

RDY = off.
Inputs
u Analog input of the block
R1 Block reset
yO Initial output value
Outputs
y Delayed input signal
RDY Ready flag indicating that the buffer is filled with the input signal
samples
Parameter
n Delay (number of samples). The resulting time delay is n - T,
where T is the block execution period. 40 110000000 ®10
nmax Limit for parameter n (used for internal memory allocation)

}10 110000000 ®100

Double (F64)
Bool
Double (F64)

Double (F64)
Bool

Long (I32)

Long (I32)

114 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

DELM — Time delay

Block Symbol Licence: STANDARD
[0y

DELM

Function Description

The DELM block implements a time delay of the input signal. The length of the delay
is given by rounding the del parameter to the nearest integer multiple of the block
execution period. The output signal is y = 0 for the first del seconds after initialization.

Input

u Analog input of the block Double (F64)
Output

y Delayed input signal Double (F64)
Parameter

del Time delay [s] ©®1.0 Double (F64)

nmax Size of delay buffer del (number of samples). Used for internal Long (I32)

memory allocation. 410 110000000 ®100

115

DER — Derivation, filtering and prediction from the last n+1
samples

Block Symbol Licence: STANDARD

u oy
RUN z
tp RDY

DER

Function Description

The DER block interpolates the last n + 1 samples (n < N — 1, N is implementation
dependent) of the input signal u by a line y = at + b using the least squares method.
The starting point of the time axis is set to the current sampling instant.

In case of RUN = on the outputs y and z are computed from the obtained parameters
a and b of the linear interpolation as follows:

Derivation: y = a

Filtering: z = b, fort,=0
Prediction: z = at,+0b, fort, >0
Retrodiction: z = at,+b, fort, <0

In case of RUN = off or n + 1 samples of the input signal are not yet available
(RDY = off), the outputs are set to y =0, z = u.

Inputs
u Analog output of the block Double (F64)
RUN Enable execution Bool
off ... tracking (z =u)
on filtering (y — estimate of the derivative, z — estimate
of u at time t,)
tp Time instant for prediction/filtering (tp = 0 corresponds with Double (F64)
the current sampling instant)
Outputs
y Estimate of input signal derivative Double (F64)
z Predicted /filtered input signal Double (F64)
RDY Ready flag (all n+ 1 samples are available) Bool
Parameters
n Number of samples for interpolation (n + 1 samples are used); Long (I32)

1 <n < nmazx 41 110000000 ©10

116 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

nmax Limit for parameter n (used for internal memory allocation) Long (I32)
11 110000000 ®10

EVAR — Moving mean value and standard deviation

117

Block Symbol Licence: STANDARD

mu p
'

EVAR

Function Description

The EVAR block estimates the mean value mu (1) and standard deviation si (o) from the

last n samples of the input signal u according to the formulas

1n—1
HE = 1 Uk—q
=0
n—1
o = 1 w2 -l
k= nE: k—i — Mk
i=0

where k stands for the current sampling instant.

Input
u Analog input of the block
Outputs
mu Mean value of the input signal
si Standard deviation of the input signal
Parameter
n Number of samples to estimate the statistical properties from
42 110000000 ®100
nmax Limit value of parameter n (used for internal memory allocation)

110 110000000 ©200

Double (F64)

Double (F64)
Double (F64)

Long (I32)

Long (I32)

118 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

INTE — Controlled integrator

Block Symbol Licence: STANDARD

Function Description

The INTE block implements a controlled integrator with variable integral time constant
ti and two indicators of the output signal level (ymin a ymax). If RUN = on and R1 = off

then .
1
vt) = [ulrr .
Ti Jo
where C' = y0. If RUN = off and R1 = off then the output y is frozen to the last value
before the falling edge at the RUN input signal. If R1 = on then the output y is set to the

initial value y0. The integration uses the trapezoidal method as follows

Ts
Yk = Yk—1 T Tﬂ(uk + uk-1),
where Tg is the block execution period.
Consider using the SINT block, whose simpler structure and functionality might be
sufficient for elementary tasks.

Inputs
u Analog input of the block Double (F64)
RUN Enable execution Bool
off ... Integration stoppedn Integration running
R1 Block reset, initialization of the integrator output to y0 Bool
yO Initial output value Double (F64)
ti Integral time constant Double (F64)
Outputs
y Integrator output Double (F64)
Q Running integration indicator Bool
LY Lower level indicator (y < ymin) Bool

HY Upper level indicator (y > ymax) Bool

119

Parameters

ymin Lower level definition ©®-1.0 Double (F64)
ymax Upper level definition ®1.0 Double (F64)

120 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

KDER — Derivation and filtering of the input signal

Block Symbol Licence: ADVANCED

d2y
U d3y

d5y
KDER

Function Description

The KDER block is a Kalman-type filter of the norder-th order aimed at estimation of
derivatives of locally polynomial signals corrupted by noise. The order of derivatives
ranges from 0 to norder — 1. The block can be used for derivation of almost arbitrary
input signal u = ug(t) + v(t), assuming that the frequency spectrums of the signal and
noige differ.

The block is configured by only two parameters pbeta and norder. The pbeta pa-
rameter depends on the sampling period T, frequency properties of the input signal u
and also the noise to signal ratio. An approximate formula pbeta ~ Tswy can be used.
The frequency spectrum of the input signal u should be located deep down below the
cutoff frequency wg. But at the same time, the frequency spectrum of the noise should
be as far away from the cutoff frequency wg as possible. The cutoff frequency wg and
thus also the pbeta parameter must be lowered for strengthening the noise rejection.

The other parameter norder must be chosen with respect to the order of the estimated
derivations. In most cases the 2nd or 3rd order filter is sufficient. Higher orders of the
filter produce better derivation estimates for non-polynomial signals at the cost of slower
tracking and higher computational cost.

Input
u Input signal to be filtered Double (F64)
Outputs
y Filtered input signal Double (F64)
dy Estimated 1st order derivative Double (F64)
d2y Estimated 2nd order derivative Double (F64)
d3y Estimated 3rd order derivative Double (F64)
d4y Estimated 4th order derivative Double (F64)
dby Estimated 5th order derivative Double (F64)
Parameters

norder Order of the derivative filter 42 110 ®3 Long (132)

121

pbeta Bandwidth of the derivative filter J0.0 ®0.1 Double (F64)

122 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

LPF — Low-pass filter

Block Symbol Licence: STANDARD

[u_vp

LPF

Function Description
The LPF block implements a second order filter in the form

1
 a?s2 4 2as+ 1’

where

V22T 2 1262 41
a =

27 fy

and fb and £ = xi are the block parameters. The fb parameter defines the filter band-
width and xi is the relative damping coefficient. The recommended value is xi = 0.71

for the Butterworth filter and xi = 0.87 for the Bessel filter.

If ISSF = on, then the state of the filter is set to the steady value at the block

initialization according to the input signal u.

Input
u Input signal to be filtered
Output
y Filtered output signal
Parameters
fb Filter bandwidth [Hz]; the frequencies in the range (0, fb) pass
through the filter, the attenuation at the frequency fb is 3 dB
and approximately 40 dB at 10 - £b; it must hold f; < ﬁ for
proper function of the filter, where T is the block execution
period 1.0
xi Relative damping coefficient (recommended value 0.5 to 1)
©0.707
ISSF Steady state at start-up
off ... Zero initial state

on Initial steady state

Double

Double

Double

Double

Bool

(F64)

(F64)

(F64)

(F64)

123

MINMAX — Running minimum and maximum

Block Symbol Licence: STANDARD

ymin
ymax
R1 RDY

MINMAX

Function Description

The MINMAX function block evaluates minimum and maximum from the last n samples
of the u input signal. The output RDY = off indicates that the buffer contains less than
n samples. In such a case the minimum and maximum are found among the available
samples.

Inputs
u Analog input of the block Double (F64)
R1 Block reset Bool
Outputs
ymin Minimal value found Double (F64)
ymax Maximal value found Double (F64)
RDY Ready flag (buffer filled) Bool
Parameters
n Number of samples for analysis (buffer length) Long (I32)
J1 110000000 ®100
nmax Limit value of parameter n (used for internal memory allocation) Long (I32)

110 110000000 200

124 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

NSCL — Nonlinear scaling factor

Block Symbol Licence: STANDARD
[0y

NSCL

Function Description

The NSCL block compensates common nonlinearities of the real world (e.g. the servo
valve nonlinearity) by using the formula

u
+(1—ze)-u’

= a'
y=galns o

where gain and ze are the parameters of the block. The choice of ze within the interval
(0,1) leads to concave transformation, while ze > 1 gives a convex transformation.

gainf
>
5
=3
>3
o
] S— ‘ ‘ ‘]
0 0.2 0.4 0.6 0.8 1
input u
Input
u Analog input of the block Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
gain Signal gain ©®1.0 Double (F64)

ze Shaping parameter ®1.0 Double (F64)

125

RDFT — Running discrete Fourier transform

Block Symbol Licence: ADVANCED

amp

vPhi

HLD vim

RDFT

Function Description

The RDFT function block analyzes the analog input signal using the discrete Fourier
transform with the fundamental frequency freq and optional higher harmonic frequen-
cies. The computations are performed over the last m samples of the input signal u, where
m = nper/freq/Tys, i.e. from the time-window of the length equivalent to nper periods
of the fundamental frequency.

If nharm > 0 the number of monitored higher harmonic frequencies is given solely by
this parameter. On the contrary, for nharm = 0 the monitored frequencies are given by
the user-defined vector parameter freq?2.

For each frequency the amplitude (vAmp output), phase-shift (vPhi output), real/cosine
part (vRe output) and imaginary/sine part (vIm output). The output signals have the
vector form, therefore the computed values for all the frequencies are contained within.
Use the VTOR function block to disassemble the vector signals.

Inputs
u Analog input of the block Double (F64)
HLD Hold Bool
Outputs
amp Amplitude of the fundamental frequency Double (F64)
thd Total harmonic distortion (only for nharm > 1) Double (F64)
vAmp Vector of amplitudes at given frequencies Reference
vPhi Vector of phase-shifts at given frequencies Reference
vRe Vector of real parts at given frequencies Reference
vIm Vector of imaginary parts at given frequencies Reference
E Error flag Bool
iE Error code Error

i REXYGEN general error

126 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Parameters
freq Fundamental frequency J1e-09 11e+09 ©1.0 Double (F64)
nper Number of periods to calculate upon 41 110000 ©®10 Long (I32)
nharm Number of monitored harmonic frequencies J0 116 ®3 Long (I32)
ifrunit Frequency units 112 ®1 Long (I32)
1 ... Hz
2 ... rad/s
iphunit Phase shift units 1012 ®1 Long (I32)
1 ... degrees
2 ... radians
nmax Allocated size of array 410 710000000 ©8192 Long (I32)

freq2 Vector of user-defined monitored frequencies ©[2.0 3.0 4.0] Double (F64)

127

RLIM — Rate limiter

Block Symbol Licence: STANDARD

u_vp

RLIM

Function Description

The RLIM block copies the input signal u to the output y, but the maximum allowed rate
of change is limited. The limits are given by the time constants tp and tn:

the steepest rise per second: 1/tp
the steepest descent per second: —1/tn
Input
u Input signal to be filtered Double (F64)
Output
y Filtered output signal Double (F64)
Parameters
tp Time constant defining the maximum allowed rise ©2.0 Double (F64)
tn Time constant defining the maximum allowed descent (note that Double (F64)

tn > 0) ©2.0

128 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

S10F2 — One of two analog signals selector

Block Symbol Licence: ADVANCED

Function Description

The S10F2 block assesses the validity of two input signals ul and u2 separately. The
validation method is equal to the method used in the SAT block. If the signal ul (or u2)
is marked invalid, the output E1 (or E2) is set to on and the error code is sent to the iE1
(or iE2) output. The S10F2 block also evaluates the difference between the two input
signals. The internal flag D is set to on if the differences [ul — u2| in the last nd samples
exceed the given limit, which is given by the following inequation

vmax — vmin

1 —u2| > pd ,
|ul — u2| > pdev 00

where vmin and vmax are the minimal and maximal limits of the inputs ul and u2 and
pdev is the allowed percentage difference with respect to the overall range of the input
signals. The value of the output y depends on the validity of the input signals (flags E1
and E2) and the internal difference flag D as follows:

(i) If E1 = off and E2 = off and D = off , then the output y depends on the mode
parameter:

1112#112, for mode =1,

y =4 min(ul,u2), for mode = 2,

max(ul,u2), for mode = 3,

and the output E is set to off unless set to on earlier.
(ii) If E1 = off and E2 = off and D =on , then y = sv and E = on.

(iii) If E1 = on and E2 = off (E1 = off and E2 = on) , then y = u2 (y = ul) and the
output E is set to off unless set to on earlier.

(iv) If E1 = on and E2 = on , then y = sv and E = on.

The input R resets the inner error flags F1-F4 (see the SAI block) and the D flag. For
the input R set permanently to on, the invalidity indicator E1 (E2) is set to on for only
one cycle period whenever some invalidity condition is fulfilled. On the other hand, for
R = 0, the output E1 (E2) is set to on and remains true until the reset (R: off—on). A

129

similar rule holds for the E output. For the input R set permanently to on, the E output
is set to on for only one cycle period whenever a rising edge occurs in the internal D flag
(D = off — on). On the other hand, for R = 0, the output E is set to on and remains
true until the reset (rising edge R: off—on). The output W is set to on only in the (iii)
or (iv) cases, i.e. at least one input signal is invalid.

Inputs
ul First analog input of the block Double (F64)
u?2 Second analog input of the block Double (F64)
sv Substitute value for an error case, i.e. E = on Double (F64)
HF1 Hardware error flag for signal u1 Bool
off ... The input module of the signal works normally
on Hardware error of the input module occurred
HF2 Hardware error flag for signal u2 Bool
off ... The input module of the signal works normally
on Hardware error of the input module occurred
R Reset inner error flags of the input signals ul and u2 Bool
Outputs
y Analog output of the block Double (F64)
E Output signal invalidity indicator Bool
off ... Signal is valid on Signal is invalid
E1l Invalidity indicator for input ul Bool
off ... Signal is valid on Signal is invalid, y = u2
E2 Invalidity indicator for input u2 Bool
off ... Signal is valid on Signal is invalid, y = ul
iE1l Reason of input ul invalidity Long (I32)
0 Signal valid
1 ... Signal out of range
2 ... Signal varies too little
K Signal varies too little and signal out of range
4 Signal varies too much
5 Signal varies too much and signal out of range
6 Signal varies too much and too little
T ... Signal varies too much and too little and signal out
of range
8 Hardware error
iE2 Reason of input u2 invalidity, see the iE1 output Long (I32)
W Warning flag (invalid input signal) Bool
off ... Both input signals ul and u2 are valid

on At least one of the input signals is invalid

130 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Parameters
nb Number of samples which are not included in the validity Long (I32)
assessment of the signals ul and u2 after initialization of the
block ®10
nc Number of samples for invariability testing (see the SAI block, Long (I32)
condition F2) ©10
nbits Number of A/D converter bits (source of the signals ul and u2) Long (I32)
®12
nr Number of samples for variability testing (see the SAI block, Long (I32)
condition F3) ®10
prate Maximum allowed percentage change of the input ul (u2) within Double (F64)
the last nr samples (with respect to the overall range of the input
signals vmax — vmin, see the SAT block) ©10.0
nv Number of samples for out-of-range testing (see the SAI block, Long (I32)
condition F4) o1
vmin Lower limit for the input signals ul and u2 ®-1.0 Double (F64)
vmax Upper limit for the input signals ul and u2 ®1.0 Double (F64)
nd Number of samples for deviation testing (inner flag D; D is always Long (I32)
off for nd = 0) ©b
pdev Maximum allowed percentage deviation of the inputs ul and u2 Double (F64)
with respect to the overall range of the input signals vmax —vmin
©10.0
mode Defines how to compute the output signal y when both input Long (I32)
signals are valid (E1 = off, E2 = off and D = off) o1
1. Average, y = 4lu2
2 ... Minimum, y = min(ul,u2)

3 ... Maximum, y = max(ul,u2)

131

SAI — Safety analog input

Block Symbol Licence: ADVANCED

Function Description

The SAI block tests the input signal u and assesses its validity. The input signal u is
considered invalid (the output E = on) in the following cases:

F1: Hardware error. The input signal HWF = on.

F2: The input signal u varies too little. The last nc samples of the input u lies within
the interval of width du,

VBAX-VIIN - for npits € {8,9,...,16}

nbits
du = < 2
0 for nbits ¢ {8,9,...,16},

)

where vmin and vmax are the lower and upper limits of the input u, respectively,
and nbits is the number of A/D converter bits. The situation when the input
signal u varies too little is shown in the following picture:

. max - min < du
max - min > du ;

e

k-nc+1 k

/

A 4

k-nc+1 k

Sufficient changes in the signal u, The signal u varies too little,
F2=0 F2=1

If the parameter nc is set to nc = 0, the condition F2 is never fulfilled.

F3: The input signal u varies too much. The last nr samples of the input u filtered by
the SPIKE filter have a span which is greater than rate,

vmax — vmin

te = prat ,
rate prate 100

where prate defines the allowed percentage change in the input signal u within the
last nr samples (with respect to the overall range of the input signal u € (vmin, vmax)).

132 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

The block includes a SPIKE filter with fixed parameters mingap = %&Y’min and

q = 2 suppressing peaks in the input signal to avoid undesirable fulfilling of this
condition. See the SPIKE block description for more details. The situation when
the input signal u varies too much is shown in the following picture:

max - min > rate

max - min < rate

A 4

~ v

V4

A

k-nr+1 k
k-nr+1 k

Acceptable changes in the signal u, The signal u varies too much,
F3=0 F3=1

If the parameter nr is set to nr = 0, the condition F3 is never fulfilled.

F4: The input signal u is out of range. The last nv samples of the input signal u lie out
of the allowed range (vmin, vmax).

If the parameter nv is set to nv = 0, the condition F4 is never fulfilled.

The signal u is copied to the output y without any modification when it is considered
valid. In the other case, the output y is determined by a substitute value from the sv
input. In such a case the output E is set to on and the output iE provides the error code.
The input R resets the inner error flags F1-F4. For the input R set permanently to on,
the invalidity indicator E is set to on for only one cycle period whenever some invalidity
condition is fulfilled. On the other hand, for R = off, the output E is set to on and
remains true until the reset (rising edge R: off—on).

The table of error codes iE resulting from the inner error flags F1-F4:

F1 F2 F3 F4

M-
[z

N == = O O OO
¥ =_ O O = OO
-1 OO W N~ O

¥ == O O =O O
co

_ O O OO O o o oo

The nb parameter defines the number of samples which are not included in the validity
assessment after initialization of the block (restart). Recommended setting is nb > 5 to
allow the SPIKE filter initial conditions to fade away.

Inputs

SV

HWF

Outputs
y

yf
E

iE

Analog input of the block
Substitute value to be used when the signal u is marked as invalid

Hardware error indicator
off ... The input module of the signal works normally
on Hardware error of the input module occurred

Reset inner error flags F1-F4

Analog output of the block
Filtered analog output signal y, output of the SPIKE filter
Output signal invalidity indicator
off ... Signal is valid
on Signal is invalid, y =

yf = sv

Reason of invalidity

0 Signal valid

1 ... Signal out of range

2 ... Signal varies too little

3 ... Signal varies too little and signal out of range

4 Signal varies too much

5 Signal varies too much and signal out of range

6 Signal varies too much and too little

7T ... Signal varies too much and too little and signal out
of range

8 Hardware error

Parameters

nb

nc

nbits

nr

prate

nv

vmin

vmax

Number of samples which are not included in the validity
assessment of the signal u after initialization of the block ©10
Number of samples for invariability testing (the F2 condition)
©10
Number of A/D converter bits ©®12
Number of samples for variability testing (the F3 condition)
©®10
Maximum allowed percentage change of the input u within the
last nr samples (with respect to the overall range of the input

signal vmax — vmin) ©10.0
Number of samples for out-of-range testing (the F4 condition)
o1
Lower limit for the input signal u ®-1.0
Upper limit for the input signal u 1.0

133

Double (F64)
Double (F64)

Bool

Bool

Double (F64)
Double (F64)
Bool

Long (I32)

Long (I32)
Long (I32)

Long (I32)
Long (I32)

Double (F64)

Long (I32)

Double (F64)
Double (F64)

134

SEL — Selector switch for analog signals

CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Block Symbol

Function Description

Licence: STANDARD

The SEL block is obsolete, replace it by the SELQUAD block. Note the difference in binary
selector signals SWn.

The SEL block selects one of the four input signals ul, u2, u3 and u4 and copies it to
the output signal y. The selection is based on the 1SW input or the binary inputs SW1 and
SW2. These two modes are distinguished by the BINF binary flag. The signal is selected
according to the following table:

Inputs

ul
u2
u3
ué4
iSw
SWi
SW2

Output

y

Parameter

BINF

iSWw SWi Sw2 y
off off ul
off on u2
on off wu3
on on u4

W N = O

First analog input of the block

Second analog input of the block

Third analog input of the block

Fourth analog input of the block

Active signal selector, active when BINF = off
Binary signal selector, active when BINF = on
Binary signal selector, active when BINF = on

The selected signal

Enable the binary selectors
off ... Disabled (analog selector)
on Enabled (binary selectors)

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)
Bool

Bool

Double (F64)

Bool

135

SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals

Block Symbols

SELQUAD

Function Description

SELOCT

SELHEXD

Licence: STANDARD

The SELQUAD, SELOCT and SELHEX blocks select one of the input signals and copy it to
the output signal y. The selection of the active signal u0...u15 is based on the iSW input
or the binary inputs SWO...SW3. These two modes are distinguished by the BINF binary
flag. The signal is selected according to the following table:

iSW SWO SWi1 SwW2 SW3 y
0 off off off off w0
1 on off off off ul
2 off on off off u2
3 on on off off u3
4 off off on off u4
5 on off on off ub
6 off on on off u6
7 on on on off u7
8 off off off on u8
9 on off off on ud
10 off on off on ul0
11 on on off on ull
12 off off on on ul2
13 on off on on ul3
14 off on on on ul4d
15 on on on on ulb

Please note that the only difference among the blocks is the number of inputs.

136
Inputs
u0. .15 Analog inputs of the block
iSwW Active signal selector
SWo..3 Binary signal selectors
Output
y The selected input signal
Parameter
BINF Enable the binary selectors

off ...
on

Disabled (analog selector)
Enabled (binary selectors)

CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Double (F64)
Long (I32)
Bool

Double (F64)

Bool

137

SHIFTOCT — Data shift register

Block Symbol Licence: STANDARD

SHIFTOCT

Function Description

The SHIFTOCT block works as a shift register with eight outputs of arbitrary data
type.

If the RUN input is active, the following assignment is performed with each algorithm
tick:

Vi = Vi_1, t=1.7
yO = u

Thus the value on each output yO to y6 is shifted to the following output and the
value on input u is assigned to output y0.

The block works with any data type of signal connected to the input u. Data type
has to be specified by the vtype parameter. Outputs yO to y8 then have the same data
type.

If you need a triggered shift register, place the EDGE_ block in front of the RUN input.

Inputs
u Data input of the register Unknown
RUN Enables outputs shift Bool
Outputs
yO First output of the block Unknown
y1 Second output of the block Unknown
y2 Third output of the block Unknown
y3 Fourth output of the block Unknown
y4 Fifth output of the block Unknown
y5 Sixth output of the block Unknown
y6 Seventh output of the block Unknown

y7 Eighth output of the block Unknown

138 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Parameters
vtype Output data type ®8 Long (I32)

1 ... Bool
2 ... Byte (U8)
3 ... Short (T16)
4 ... Long (I32)
5 ... Word (U16)
6 DWord (U32)
T o Float (F32)
8 Double (F64)

10 Large (I64)

139

SHLD — Sample and hold

Block Symbol Licence: STANDARD

u
SETHy
R1

SHLD

Function Description

The SHLD block is intended for holding the value of the input signal. It processes the
input signal according to the mode parameter.

In Triggered sampling mode the block sets the output signal y to the value of the
input signal u when rising edge (off—on) occurs at the SETH input. The output is held
constant unless a new rising edge occurs at the SETH input.

If Hold last value mode is selected, the output signal y is set to the last value of the
input signal u before the rising edge at the SETH input occured. It is kept constant as
long as SETH = on. For SETH = off the input signal u is simply copied to the output y.

In Hold current value mode the u input is sampled right when the rising edge
(off—on) occurs at the SETH input. It is kept constant as long as SETH = on. For
SETH = off the input signal u is simply copied to the output y.

The binary input R1 sets the output y to the value y0, it overpowers the SETH input
signal.

See also the PARR block, which can be used for storing a numeric value as well.

Inputs
u Analog input of the block Double (F64)
SETH Trigger for the set and hold operation Bool
R1 Block reset, R1 = on — y = yO0 Bool
Output
y Analog output of the block Double (F64)
Parameter
yO Initial output value Double (F64)
mode Sampling mode ©®3 Long (I32)
1 ..., Triggered sampling
2 ... Hold last value

3 ... Hold current value

140 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

SINT — Simple integrator

Block Symbol Licence: STANDARD
[0y

SINT

Function Description

The SINT block implements a discrete integrator described by the following difference
equation
Ts
2T;
where T is the block execution period and T is the integral time constant. If y;, falls out
of the saturation limits ymin and ymax, the output and state of the block are appropriately
modified.

For more complex tasks, consider using the INTE block, which provides extended
functionality.

Yk = Yk—1 T (uk + up—1),

Input
u Analog input of the block Double (F64)
Output
v Analog output of the block Double (F64)
Parameters
ti Integral time constant T; ©®1.0 Double (F64)
yO Initial output value Double (F64)
ymax Upper limit of the output signal ®1.0 Double (F64)

ymin Lower limit of the output signal ®-1.0 Double (F64)

141

SPIKE — Spike filter

Block Symbol Licence: ADVANCED
[0y

SPIKE

Function Description

The SPIKE block implements a nonlinear filter for suppressing isolated peaks (pulses) in
the input signal u. One cycle of the SPIKE filter performs the following transformation

(0,y) =y

delta :=y - u;
if abs(delta) < gap
then
begin
y o= u;
gap := gap/q;
ifgap < mingap then gap:= mingap;
end
else
begin
if delta <
then y := y + gap
else y := y - gap;
gap := gap * q;
end

(@)

where mingap and q are the block parameters.

The signal passes through the filter unaffected for sufficiently large mingap parameter,
which defines the minimal size of the tolerance window. By lowering this parameter it
is possible to find an appropriate value, which leads to suppression of the undesirable
peaks but leaves the input signal intact otherwise. The recommended value is 1 % of
the overall input signal range. The q parameter determines the adaptation speed of the
tolerance window.

Input
u Input signal to be filtered Double (F64)

Output
y Filtered output signal Double (F64)

142 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Parameters

mingap Minimum size of the tolerance window ©0.01 Double (F64)
q Tolerance window adaptation speed $1.0 ®2.0 Double (F64)

SSW — Simple switch

Block Symbol

ul
u2 yp
SW

SsSw

Function Description

143

Licence: STANDARD

The SSW block selects one of two input signals ul and u2 with respect to the binary input
SW. The selected input is copied to the output y. If SW = off (SW = on), then the selected
signal is ul (u2).

Inputs

ul
u2
Sw

Output

First analog input of the block

Second analog input of the block

Signal selector
off ... The ul signal is selected, y = ul
on The u2 signal is selected, y = u2

Analog output of the block

Double (F64)
Double (F64)
Bool

Double (F64)

144 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

SWR — Selector with ramp

Block Symbol Licence: STANDARD

Function Description

The SWR block selects one of two input signals ul and u2 with respect to the binary
input SW. The selected input is copied to the output y. If SW = off (SW = on), then
the selected signal is ul (u2). The output signal is not set immediately to the value of
the selected input signal but tracks the selected input with given rate constraint (i.e. it
follows a ramp). This rate constraint is configured independently for each input ul, u2
and is defined by time constants t1 and t2. As soon as the output reaches the level of
the selected input signal, the rate limiter is disabled and remains inactive until the next
signal switching.

Inputs
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Sw Signal selector Bool
off ... The ul signal is selected
on The u2 signal is selected
Parameters
t1 Rate limiter time constant for switching from u2 toul ©1.0 Double (F64)
t2 Rate limiter time constant for switching from ul tou2 ©1.0 Double (F64)
yo Initial output value to start the tracking from (before the first Double (F64)
switching of signals occurs)
Output

y Analog output of the block Double (F64)

145

VDEL — Variable time delay

Block Symbol Licence: STANDARD
v}

VDEL

Function Description

The VDEL block delays the input signal u by the time defined by the input signal d.
More precisely, the delay is given by rounding the input signal d to the nearest integer
multiple of the block execution period (n - Tg). A substitute value y0 is used until n
previous samples are available after the block initialization.

Inputs
u Analog input of the block Double (F64)
d Time delay [s] Double (F64)
Output
y Delayed input signal Double (F64)
Parameter
yo Initial /substitute output value Double (F64)
nmax Size of delay buffer (number of samples) for the time delay d. Long (I32)

Used for internal memory allocation. 410 710000000 ®1000

146 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

ZV41IS — Zero vibration input shaper

Block Symbol Licence: ADVANCED

YAZIR)

Function Description

The function block ZV4IS implements a band-stop frequency filter. The main field of
application is in motion control of flexible systems where the low stiffness of mechanical
construction causes an excitation of residual vibrations which can be observed in form
of mechanical oscillations. Such vibration can cause significant deterioration of quality
of control or even instability of control loops. They often lead to increased wear of
mechanical components. Generally, the filter can be used in arbitrary application for a
purpose of control of an oscillatory system or in signal processing for selective suppression
of particular frequency.

Signal gen. [ZVA4IS FE’ C(s) > P(s) H

a)

Signal gen. [+ sl C(s) |»| 2V4IS || P(s) |
[.

The input shaping filter can be used in two different ways. By using an open loop
connection, the input reference signal for an feedback loop coming from human operator
or higher level of control structure is properly shaped in order to attenuate any unwanted
oscillations. The internal dynamics of the filter does not influence a behaviour of the infe-
rior loop. The only condition is correct tuning of feedback compensator C(s), which has
to work in linear mode. Otherwise, the frequency spectrum of the manipulating variable
gets corrupted and unwanted oscillations can still be excited in a plant P(s). The main
disadvantage is passive vibration damping which works only in reference signal path.
In case of any external disturbances acting on the plant, the vibrations may still arise.
The second possible way of use is feedback connection. The input shaper is placed on the
output side of feedback compensator C'(s) and modifies the manipulating variable acting
on the plant. An additional dynamics of the filter is introduced and the compensator
C'(s) needs to be properly tuned.

The algorithm of input shaper can be described in time domain
y(t) = Alu(t — tl) + Agu(t — tg) + Agu(t — t3) + A4u(t — t4)

Thus, the filter has a structure of sum of weighted time delays of an input signal. The
gains Ay..A4 and time delay values t¢1..t4 depend on a choice of filter type, natural

147

frequency and damping of controlled oscillatory mode of the system. The main advantage
of this structure compared to commonly used notch filters is finite impulse response
(which is especially important in motion control applications), warranted stability and
monotone step response of the filter and generally lower dynamic delay introduced into
a signal path.

For correct function of the filter, natural frequency omega and damping xi of the
oscillatory mode need to be set. The parameter ipar sets a filter type. For ipar = 1, one
of ten basic filter types chosen by istype is used. Particular basic filters differ in shape
and width of stop band in frequency domain. In case of precise knowledge of natural
frequency and damping, the ZV (Zero Vibration) or ZVD filters can be used, because
their response to input signal is faster compared to the other filters. In case of large
uncertainty in system/signal model, robust UEI (Extra Insensitive) or UTHEI filters
are good choice. Their advantage is wider stopband at the cost of slower response. The
number on the end of the name has the meaning of maximum allowed level of excited
vibrations for the given omega and xi (one, two or five percent).

For precise tuning of the filter, complete parameterization ipar = 2 can be selected.
For this choice, three parameters p_alpha,p_a2 and p_a3 which affect the shape of the
filter frequency response can freely be assigned. These parameters can be used for finding
of optimal compromise between robustness of the filter and introduced dynamical delay.

N
N

Filter amplitude response A(jw)

©c o o 9o
o N M O 0 -

o
N
)

Input frequency w [rad]

The asymmetry parameter p_alpha determines relative location of the stopband of
filter frequency response with respect to chosen natural frequency. Positive values mean
a shift to higher frequency range, negative values to lower frequency range, zero value
leads to symmetrical shape of the characteristic (see the figure above). The parameter
p_alpha also affects the overall filter length, thus the overall delay introduced into a
signal path. Lower values result in slower filters and higher delay. Asymmetric filters can
be used in cases where a lower or higher bound of the uncertainty in natural frequency
parameter is known.

148 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

3 1
=
<C
$ 0.8 | [—p,=01
% --p,=0.2
8 0.6r ‘ / | - p,=0.3
3 \ / =0.4
304 \ / 1 |=--P7Y
a N\ /d —p,=0.5
502 ~ / :
é L2700
il ‘ g oo ‘

0 0.5 W&1 1.5 2 25 3

Input frequency w [rad]

Insensitivity parameter p_a2 determines the width and attenuation level of the filter
stopband. Higher values result in wider stopband and higher attenuation. For most ap-
plications, the value p_a2 = 0.5 is recommended for highest achievable robustness with
respect to modeling errors.

3 s P3=P,
= D ,
< \& &) 04
&3 - 4 -
308 \Wa) ,,, 1 |—p,=0.
c £ _
2 ---P, 708
%) L N KAV 4
9 06 “1}‘ ‘IA::,I R p2=07
o e PN =0.75
S 04t e
£ L a =0.8
g Ve g — P
Y AY , I -
© 0.2r * \ s\ i
5) SRR o)
= \\ ’/,‘ s_\ ”\\ ,/ /")‘\ 7
C o0 LN e N e e
0 0.5 w=1 1.5 2

Input frequency w [rad]

The additional parameter p_a3 needs to be chosen for symmetrical filters (p_alpha =
0). A rule for the most of the practical applications is to chose equal values p_a2 =
p-a3 from interval < 0,0.75 >. Overall filter length is constant for this choice and only
the shape of filter stopband is affected. Lower values lead to robust shapers with wide
stopband and frequency response shape similar to standard THEI (Two-hump extra
insensitive) filters. Higher values lead to narrow stopband and synchronous drop of two
stopband peaks. The choice p_a2 = p_a3 = 0.75 results in standard ZVDD filter with
maximally flat and symmetric stopband shape. The proposed scheme can be used for
systematic tuning of the filter.

Input

u Input signal to be filtered Double (F64)

Outputs

y
E

Parameters

omega
xi

ipar

istype

p_alpha
p_a2
p-a3
nmax

Filtered output signal

Error flag

off ... No error on An error occurred
Natural frequency ©1.0
Relative damping coefficient
Specification o1

1 ..., Basic types of IS

2 ... Complete parametrization
Type ©2

1 ... ZV

2 ... ZVD

3 ... ZVDD

4 ... MISZV

5 UEIl

6 UEI2

7o UEI5

8 UTHEI1

9 UTHEI2

10 UTHEI5
Shaper duration/assymetry parameter 0.2
Insensitivity parameter ©0.5
Additional parameter (only for p_alpha = 0) ©0.5

Size of data buffer (number of samples). Used for internal
memory allocation. 110 110000000 ©1000

149

Double (F64)
Bool

Double (F64)
Double (F64)
Long (I32)

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Long (I32)

150 CHAPTER 5. ANALOG — ANALOG SIGNAL PROCESSING

Chapter 6

GEN — Signal generators

Contents

ANLS — Controlled generator of piecewise linear function

BINS — Controlled binary sequence generator

BIS — Binary sequence generator

MP — Manual pulse generator vttt v vt

PRBS — Pseudo-random binary sequence generator « . .

SG, SGI — Signal generators 0oL,

151

152 CHAPTER 6. GEN - SIGNAL GENERATORS

ANLS — Controlled generator of piecewise linear function

Block Symbol Licence: STANDARD

.
3

ANLS

Function Description

The ANLS block generates a piecewise linear function of time given by nodes t1,y1;
t2,y2; t3,y3; t4,y4. The initial value of output y is defined by the yO parameter. The
generation of the function starts when a rising edge occurs at the RUN input (and the
internal timer is set to 0). The output y is then given by

Yis1 = Ui

y=yi+
Yot — 4

t—t)
within the time intervals (t;,t;11),1=0,...,3,t9 = 0.

To generate a step change in the output signal, it is necessary to to define two nodes
in the same time instant (i.e. t; = t;11). The generation ends when time t4 is reached or
when time ¢; is reached and the following node precedes the active one (i.e. tiy1 < t;).
The output holds its final value afterwards. But for the RPT parameter set to on, instead
of holding the final value, the block returns to its initial state y0, the internal block timer
is set to 0 and the sequence is generated repeatedly. This can be used to generate square
or sawtooth functions. The generation can also be prematurely terminated by the RUN
input signal set to off. In that case the block returns to its initial state yO, the internal
block timer is set to 0 and is = 0 becomes the active time interval.

Input
RUN Enable execution, run the analog sequence generation Bool
Outputs
y Analog output of the block Double (F64)
is Index of the active time interval Long (I32)
Parameters
yO Initial output value Double (F64)
t1 Node 1 time ©®1.0 Double (F64)
y1 Node 1 value Double (F64)
t2 Node 2 time ®1.0 Double (F64)

y2 Node 2 value ©1.0 Double (F64)

t3
y3
t4
y4
RPT

Node 3 time

Node 3 value

Node 4 time

Node 4 value

Repeating sequence
off ... Disabled
on Enabled

2.0
©®1.0
2.0

Double
Double
Double
Double
Bool

153

(F64)
(F64)
(F64)
(F64)

154 CHAPTER 6. GEN - SIGNAL GENERATORS

BINS — Controlled binary sequence generator

Block Symbol Licence: STANDARD

Y p
START [P

BINS

Function Description

The BINS block generates a binary sequence at the Y output, similarly to the BIS block.
The binary sequence is given by the block parameters.

e The initial value of the output is given by the YO parameter.

e Whenever a rising edge (off—on) occurs at the START input (even when a binary
sequence is being generated), the internal timer of the block is set to 0 and started.

o Whenever a rising edge occurs at the START input, the output Y is set to YO.
e The output value is inverted at time instants t1, t2, ..., t8 (off—on, on—off).

e For RPT = off, the last switching of the output occurs at time ¢;, where ;41 =0
and the output then holds its value until another rising edge (off—on) occurs at
the START input.

e For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

On the contrary to the BIS block the changes in parameters t1...t8 are accepted
only when a rising edge occurs at the START input.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< Ts/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

Input

START Starting signal (rising edge) Bool
Outputs

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

Parameters

YO

t1
t2
t3
t4
t5
t6
t7
t8
RPT

Initial output value
off ... Disabled/false
Switching time 1 [s]
Switching time 2 [s]
Switching time 3 [s]
Switching time 4 [s]
Switching time 5 [s]
Switching time 6 [s]
Switching time 7 [s]
Switching time 8 [s]
Repeating sequence
off ... Disabled

on

on

Enabled/true

Enabled

10
10
10
10
10
10
10
10

.0 O1.
.0 ®2.
.0 ®3.
.0 ©4.
.0 ©5.
.0 6.
.0 O7.
.0 ©8.

O O O O O O O o

Bool

Double
Double
Double
Double
Double
Double
Double
Double
Bool

155

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

156 CHAPTER 6. GEN - SIGNAL GENERATORS

BIS — Binary sequence generator

Block Symbol Licence: STANDARD

Y p

BIS

Function Description

The BIS block generates a binary sequence at the Y output. The sequence is given by
the block parameters.

e The initial value of the output is given by the YO parameter.

e The internal timer of the block is set to 0 when the block initializes.

e The internal timer of the block is immediately started when the block initializes.
e The output value is inverted at time instants t1, t2, ..., t8 (off—on, on—off).

e For RPT = off, the last switching of the output occurs at time ¢;, where ;41 = 0
and the output then holds its value indefinitely.

e For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

All the parameters t1...t8 can be changed in runtime and all changes are immedi-
ately accepted.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< Ts/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

See also the BINS block, which allows for triggering the sequence by external signal.

Outputs

Y Logical output of the block Bool

is Index of the active time interval Long (I32)
Parameters

YO Initial output value Bool

off ... Disabled/false on Enabled/true
t1 Switching time 1 [s] 10.0 ®1.0 Double (F64)

t2
t3
t4
t5
t6
t7
t8
RPT

Switching time 2 [s]
Switching time 3 [s]
Switching time 4 [s]
Switching time 5 [s]
Switching time 6 [s]
Switching time 7 [s]
Switching time 8 [s]
Repeating sequence

off ... Disabled

10
10
10
10
10
10
10

.0 ®2.
.0 ®3.
.0 ©4.
.0 ©5.
.0 6.
.0 O7.
.0 ©8.

O O O O O O O

Double
Double
Double
Double
Double
Double
Double
Bool

157

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

158 CHAPTER 6. GEN - SIGNAL GENERATORS

MP — Manual pulse generator

Block Symbol Licence: STANDARD

Function Description

The MP block generates a pulse of width pwidth when a rising edge occurs at the BSTATE
parameter (off—on). The algorithm immediately reverts the BSTATE parameter back to
off (BSTATE stands for a shortly pressed button). If repetition is enabled (RPTF = on),
it is possible to extend the pulse by repeated setting the BSTATE parameter to on. When
repetition is disabled, the parameter BSTATE is not taken into account during generation
of a pulse, i.e. the output pulses have always the specified width of pwidth.

The MP block reacts only to rising edge of the BSTATE parameter, therefore it cannot be
used for generating a pulse immediately at the start of the REXYGEN system executive.
Use the BIS block for such a purpose.

Output
Y Logical output of the block Bool
Parameters
pwidth Pulse width [s] ©®1.0 Double (F64)
BSTATE Output pulse activation Bool
off ... No action
on Generate output pulse
RPTF Allow pulse extension Bool

off ... Disabled
on Enabled

PRBS — Pseudo-random binary sequence generator

Block Symbol
BV
BRK BSY p

PRBS

Function Description

159

Licence: STANDARD

The PRBS block generates a pseudo-random binary sequence. The figure below displays

how the sequence is generated.

START

valhi

val0

vallo

swper

seqt

waitt

The initial and final values of the sequence are valO. The sequence starts from this
value when rising edge occurs at the START input (off—on), the output y is immediately
switched to the valhi value. The generator then switches the output to the other limit
value with the period of swper seconds and the probability of switching swprob. After
seqt seconds the output is set back to val0. A waitt-second period follows to allow
the settling of the controlled system response. Only then it is possible to start a new
sequence. It is possible to terminate the sequence prematurely by the BRK = on input

when necessary.

Inputs
START Starting signal (rising edge)
BRK Termination signal
Outputs
y Generated pseudo-random binary sequence
BSY Busy flag
Parameters
valO Initial and final value
valhi Upper level of the y output

vallo Lower level of the y output

1.0
©®-1.0

Bool
Bool

Double
Bool

Double
Double
Double

(F64)

(F64)
(F64)
(F64)

160 CHAPTER 6. GEN - SIGNAL GENERATORS

swper Period of random output switching [s] 1.0 Double (F64)
swprob Probability of switching J0.011.0 ®0.2 Double (F64)
seqt Length of the sequence [s] ©10.0 Double (F64)

waitt Settling period [s] ©2.0 Double (F64)

161

SG, SGI — Signal generators

Block Symbols Licence: STANDARD
.

Function Description

The SG and SGI blocks generate periodic signals of chosen type (isig parameter): sine
wave, square, sawtooth and white noise with uniform distribution. The amplitude and
frequency of the output signal y are given by the amp and freq parameter respectively.
The output y can have a phase shift of phase € (0,27) in the deterministic signals
(isig € {1,2,3}).

The SGI block allows synchronization of multiple generators using the RUN and SYN
inputs. The RUN parameter must be set to on to enable the generator, the SYN input
synchronizes the generators during the output signal generation.

Inputs
RUN Enable execution, run the binary sequence generation Bool
SYN Synchronization signal Bool
Output
y Analog output of the block Double (F64)
Parameters
isig Generated signal type ®1 Long (I32)
1 ..., Sine wave
2 ... Symmetrical rectangular signal
K Sawtooth signal
4 White noise with uniform distribution
amp Amplitude of the generated signal ©®1.0 Double (F64)
freq Frequency of the generated signal ®1.0 Double (F64)
phase Phase shift of the generated signal Double (F64)
offset Value added to the generated signal ®1.0 Double (F64)
ifrunit Frequency units ®1 Long (I32)
1 ... Hz
2 ... rad/s
iphunit Phase shift units ®1 Long (I32)
1 ..., degrees

2 ..., radians

162 CHAPTER 6. GEN - SIGNAL GENERATORS

Chapter 7

REG — Function blocks for control

Contents

ARLY — Advancerelay ¢ v v v v v v v v v v o o b o o oo oo 165
FLCU — Fuzzy logic controller unit 166
FRID — * Frequency response identification 168
I3PM — Identification of a three parameter model 170
LC — Lead compensatorttt 172
LLC — Lead-lag compensator 173
MCU — Manual control unit 174
PIDAT — PID controller with relay autotuner 176
PIDE — PID controller with defined static error 179
PIDGS — PID controller with gain scheduling 181
PIDMA — PID controller with moment autotuner 183
PIDU — PID controller unit 189
PIDUI — PID controller unit with variable parameters 192
POUT — Pulse output 194
PRGM — Setpoint programmer vt h et .. 195
PSMPC — Pulse-step model predictive controller 197
PWM — Pulse width modulation 201
RLY — Relay with hysteresis., 203
SAT — Saturation with variable limits 204
SC2FA — State controller for 2nd order system with frequency

autotuner ¢ i i i it e e e e e e e e e e e e e e e e e 206
SCU — Step controller with position feedback 213
SCUV — Step controller unit with velocity input 216
SELU — Controller selector unit 000 219
SMHCC — Sliding mode heating/cooling controller 220
SMHCCA — Sliding mode heating/cooling controller with autotuner 224
SWU —Switchunit00 0 0 ool o 231

164 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

TSE — Three-state element ¢ i i i eeeneoen. 232

ARLY — Advance relay

165

Block Symbol Licence: STANDARD

u_vp

ARLY

Function Description

The ARLY block is a modification of the RLY block, which allows lowering the amplitude of
steady state oscillations in relay feedback control loops. The block transforms the input

signal u to the output signal y according to the diagram below.

yA
ep enftol
l y ap
Y Y 1
M
] D —— ‘
ethoI en
Input
u Analog input of the block Double
Output
y Analog output of the block Double
Parameters
ep Value for switching the output to the "On" state ®-1.0 Double
en Value for switching the output to the "Off" state ©1.0 Double
tol Tolerance limit for the superposed noise of the input signal u Double
10.0 ®0.5
ap Value of the y output in the "On" state ©®1.0 Double
an Value of the y output in the "Off" state ®-1.0 Double

yO Initial output value Double

(F64)

(F64)

(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

166 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

FLCU — Fuzzy logic controller unit

Block Symbol Licence: ADVANCED

Function Description

The FLCU block implements a simple fuzzy logic controller with two inputs and one
output. Introduction to fuzzy logic problems can be found in [3].

The output is defined by trapezoidal membership functions of linguistic terms of the
u and v inputs, impulse membership functions of linguistic terms of the y output and
inference rules in the form

If (uis U;) AND (v is V}), then (y is Y%),

where U, ¢ = 1,...,nu are the linguistic terms of the u input; V;,j = 1,...,nv are the
linguistic terms of the v input and Y,k = 1,...,ny are the linguistic terms of the y
output. Trapezoidal (triangular) membership functions of the u and v inputs are defined
by four numbers as depicted below.

X X % X,

Not all numbers z1,...,z4 are mutually different in triangular functions. The matri-
ces of membership functions of the u and v input are composed of rows [x1,x2, T3, T4].
The dimensions of matrices mfu and mfv are (nu X 4) and (nv x 4) respectively.

The impulse 1st order membership functions of the y output are defined by the triplet

Yi> Ak, bka

where y, is the value assigned to the linguistic term Yj,k = 1,...,ny in the case of
ap = by, = 0. If ai, # 0 and by, # 0, then the term Y} is assigned the value of y, +agu+0bgv.
The output membership function matrix sty has a dimension of (ny x 3) and contains
the rows [y, ak, bg], k =1,...,ny.

The set of inference rules is also a matrix whose rows are [i, ji, kj, wy],l = 1,..., nr,
where 4, j; and k; defines a particular linguistic term of the u and v inputs and y output
respectively. The number w; defines the weight of the rule in percents w; € {0,1,...,100}.
It is possible to suppress or emphasize a particular inference rule if necessary.

Inputs

Outputs

y
ir

wr

Parameters

umax
umin
nu
vmax
vmin
nv
ny
nr
mfu

mfv
sty

rls

First analog input of the block
Second analog input of the block

Analog output of the block
Dominant rule
Degree of truth of the dominant rule

Upper limit of the u input ®1.0
Lower limit of the u input ®-1.0
Number of membership functions of the input u J1 125 ©3
Upper limit of the v input ®1.0
Lower limit of the v input ®-1.0
Number of membership functions of the input v 41125 ©3
Number of membership functions of the output y |1 7100 ©3
Number of inference rules 31125 3

Matrix of membership functions of the input u
®[-1-1-10; -1001; 011 1]
Matrix of membership functions of the input v
®[-1-1-10; -1001; 011 1]
Matrix of membership functions of the output y
®[-1 00; 000; 10 0]
Matrix of inference rules
®[1 2 3100; 111 100; 1 0 3 100]

167

Double (F64)
Double (F64)

Double (F64)
Long (I32)
Double (F64)

Double (F64)
Double (F64)
Long (I32)
Double (F64)
Double (F64)
Long (I32)
Long (I32)
Long (I32)
Double (F64)

Double (F64)
Double (F64)

Byte (U8)

168 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

FRID — * Frequency response identification

Block Symbol

Function Description

Licence: ADVANCED

The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be

available in future revisions.

Inputs
dv Feedforward control variable
pv Process variable
ID Start the tuning experiment
HLD Hold
BRK Stop the tuning experiment
Parameters
ubias Static component of the exciting signal
uamp Amplitude of the exciting signal
wb Frequency interval lower limit [rad/s]
wif Frequency interval higher limit [rad/s]
isweep Frequency sweeping mode
1 ..., Logarithmic
2 ... Linear
cp Sweeping Rate
iavg Number of values for averaging
obw Observer bandwith
1 ... LOW
2 ... NORMAL
3 ... HIGH

stime Settling period [s]

®1.0
1.0
©10.0
o1

©0.995
®10
©2

©10.0

Double (F64)
Double (F64)
Bool
Bool
Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Long (I32)
Long (I32)

Double (F64)

umax
thdmin
adapt_rc
pv_max
pv_sat
ADAPT_EN
immode

nwm

Outputs

mv
SAT
IDBSY
W
xres
xims
xrem
ximm
epv
IDE
iIDE
AO

A1

A2

A3

A4

A5
THD
DAV

Maximum generator amplitude ®1.0
Minimum demanded THD treshold ©0.1
Maximum rate of amplitude variation »0.001
Maximum desired process value 1.0
Maximum allowed process value 2.0
Enable automatic amplitude adaptation ®on
Mesurement mode o1

1..... Manual specification of frequency points

2 ..., Linear series of nmw points in the interval <wb;wf>

3 ... Logarithmic series of nmw points in the interval

<wb;wf>
4 ..., Automatic detection of important frequencies (N/A)

Number of frequency response point for automatic mode

Frequency measurement points for manual meas. mode |array of
rad/s] ©[2.0 4.0 6.0 8.0]

Manipulated variable (controller output)
Saturation flag

Tuner busy flag

Actual frequency [rad/s]

real part of frequency response (sweeping)
imaginary part of frequency response (sweeping)
real part of frequency response (measurement)
imaginary part of frequency response (measurement)
Estimated process value

Error indicator

Error code

Estimated DC value

Estimated 1st harmonics amlitude

Estimated 2nd harmonics amlitude

Estimated 3rd harmonics amlitude

Estimated 4th harmonics amlitude

Estimated 5th harmonics amlitude

Total harmonic distorsion

Data Valid

Double
Double
Double
Double
Double
Bool

169

(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Long (I32)

Double

Double
Bool

Bool

Double
Double
Double
Double
Double
Double
Bool

(F64)

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Double
Double
Double
Double
Double
Double
Double
Bool

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

170 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

I13PM — Identification of a three parameter model

Block Symbol

Function Description

Licence: ADVANCED

The I3PM block is based on the generalized moment identification method. It provides a

three parameter model of the system.

Inputs
Input of the identified system
y Output of the identified system
u0 Input steady state
yO Output steady state
RUN Execute identification
CLR Block reset
ips Meaning of the output signals
0 FOPDT model
pl ... gain
p2 ... time delay
p3 ... time constant
1 ... moments of input and output
pl ... parameter mu0
p2 ... parameter mul
p3 ... parameter mu2
p4 ... parameter my0
p5 ... parameter myl
p6 ... parameter my2
2 ... process moments
pl ... parameter mp0
p2 ... parameter mpl
p3 ... parameter mp2
3 ... characteristic numbers
pl ... parameter s
P2 ... parameter u
p3 ... parameter o?

p4 ... parameter o

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

Bool

Long (I32)

Outputs
p? Identified parameters with respect to ips, i =1,...
BSY Busy flag
RDY Ready flag
E Error flag
iE Error code
1 ..., Premature termination (RUN = off)
2 ... mu0 =0
3 ... mp0 = 0
4 a2 <0
Parameters
tident Duration of identification [s]
irtype Controller type (control law)
1 ..., D 3..... ID 5 PD 7
2 ... I 4 P 6 PI
ispeed Desired closed loop speed
1..... Slow closed loop
2 ... Normal (middle fast) closed loop

3 ... Fast closed loop

.8
»100.0
©6

PID
®2

171

Double (F64)
Bool

Bool

Bool

Long (I32)

Double (F64)
Long (I32)

Long (I32)

172 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

LC — Lead compensator

Block Symbol

Function Description

The LC block is a discrete simulator of derivative element

C(s) =

Licence: STANDARD

where td is the derivative constant and nd determines the influence of parasite 1st order
filter. It is recommended to use 2 < nd < 10. If ISSF = on, then the state of the parasite
filter is set to the steady value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the C/(s)

transfer function.

Input

u Analog input of the block
Output

y Analog output of the block
Parameters

td Derivative time constant

nd Derivative filtering parameter

ISSF Steady state at start-up

off ... Zero initial state
on Initial steady state

©1.0
©10.0

Double

Double

Double
Double
Bool

(F64)

(F64)

(F64)
(F64)

LLC — Lead-lag compensator

Block Symbol
[0y

LLC

Function Description

The LLC block is a discrete simulator of integral-derivative element

C(s) =

axtauxs+1
tauxs+1

173

Licence: STANDARD

where tau is the denominator time constant and the time constant of numerator is an
a-multiple of tau (a*tau). If ISSF = on, then the state of the filter is set to the steady

value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the
C'(s) transfer function. The sampling period used for discretization is equivalent to the

execution period of the LLC block.

Input

u Analog input of the block
Output

y Analog output of the block
Parameters

tau Time constant

a Numerator time constant coefficient

ISSF Steady state at start-up

off ... Zero initial state
on Initial steady state

1.0

Double

Double

Double
Double
Bool

(F64)

(F64)

(F64)
(F64)

174 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

MCU — Manual control unit

Block Symbol Licence: STANDARD

Function Description

The MCU block is suitable for manual setting of the numerical output value y, e.g. a
setpoint. In the local mode (LOC = on) the value is set using the buttons UP and DN.
The rate of increasing/decreasing of the output y from the initial value y0 is determined
by the integration time constant tm and pushing time of the buttons. After elapsing ta
seconds while a button is pushed, the rate is always multiplied by the factor q until
the time tf is elapsed. Optionally, the output y range can be constrained (SATF = on)
by saturation limits lolim and hilim. If none of the buttons is pushed (UP = off and
DN = off), the output y tracks the input value tv. The tracking speed is controlled by
the integration time constant tt.

In the remote mode (LOC = off), the input rv is optionally saturated (SATF = on)
and copied to the output y. The detailed function of the block is depicted in the following
diagram.

hilim
lolim
SATF
> 1
y

_

i
Inputs
tv Tracking variable Double (F64)
UP The "up" signal Bool
DN The "down" signal Bool
v Remote output value in the mode LOC = off Double (F64)

LOC Local or remote mode Bool

Output

y

Parameters

tt
tm
yO

q
ta
tf
SATF

hilim

lolim

Analog output of the block

Tracking time constant of the input tv

Initial value of integration time constant

Initial output value

Multiplication quotient

Interval after which the rate is changed [s]
Interval after which the rate changes no more [s]
Saturation flag

off ... Signal not limited
on Saturation limits active

Upper limit of the output signal
Lower limit of the output signal

o1.
©100.

©5.
4.
©8.

o1.
©-1.

Double

Double
Double
Double
Double
Double
Double
Bool

Double
Double

175

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)

176 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

PIDAT — PID controller with relay autotuner

Block Symbol Licence: AUTOTUNING

dv mv
sp sf\'?
pv TBSY
tv TE

ite
hv pk
MAN pﬁg
TUNE pnd
TBRK PP

Function Description

The PIDAT block has the same control function as the PIDU block. Additionally it is
equipped with the relay autotuning function.

In order to perform the autotuning experiment, it is necessary to drive the system to
approximately steady state (at a suitable working point), choose the type of controller
to be autotuned (PI or PID) and activate the TUNE input by setting it to on. The con-
trolled process is regulated by special adaptive relay controller in the experiment which
follows. One point of frequency respounse is estimated from the data measured during
the experiment. Based on this information the controller parameters are computed. The
amplitude of the relay controller (the level of system excitation) and its hysteresis is
defined by the amp and hys parameters. In case of hys=0 the hysteresis is determined
automatically according to the measurement noise properties on the controlled variable
signal. The signal TBSY is set to onduring the tuning experiment. A successful experiment
is indicated by and the controller parameters can be found on the outputs pk, pti, ptd,
pnd and pb. The ¢ weighting factor is assumed (and recommended) ¢=0. A failure during
the experiment causes TE = on and the output ite provides further information about
the problem. It is recommended to increase the amplitude amp in the case of error. The
controller is equipped with a built-in function which decreases the amplitude when the
deviation of output from the initial steady state exceeds the maxdev limit. The tuning
experiment can be prematurely terminated by activating the TBRK input.

Inputs

dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool

off ... Automatic mode
on Manual mode

TUNE
TBRK

Outputs

mv
de
SAT

TBSY
TE

ite

pk
pti
ptd
pnd
pb

Start the tuning experiment
Stop the tuning experiment

Manipulated variable (controller output)
Deviation error
Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated
Tuner busy flag
Tuning error
off ... Autotuning successful
on An error occurred during the experiment
Error code; expected time (in seconds) to finishing the tuning
experiment while the tuning experiment is active
1000 .. Signal/noise ratio too low
1001 .. Hysteresis too high
1002 .. Too tight termination rule
1003 .. Phase out of interval
Proposed controller gain
Proposed integral time constant

Parameters

irtype

RACT

ti

td

nd

Proposed derivative time constant

Proposed derivative component filtering

Proposed weighting factor — proportional component

Controller type (control law) ©6
1 ... D 4 P 7T ... PID
2 ... I 5 PD
3 ... ID 6 PI

Reverse action flag
off ... Higher mv — higher pv
on Higher mv — lower pv
Controller gain K. By definition, the value 0 turns the controller
off. Negative values are not allowed, use the RACT parameter for
such a purpose. 40.0 ®1.0
Integral time constant 7;. The value O disables the integrating
part (the same effect as disabling it by the irtype parameter).
10.0 ®4.0
Derivative time constant Ty. The value 0 disables the derivative
part (the same effect as disabling it by the irtype parameter).
10.0 ®1.0
Derivative filtering parameter N. The value 0 disables the
derivative part (the same effect as disabling it by the irtype
parameter). 10.0 ©®10.0

Bool
Bool

Double
Double
Bool

Bool
Bool

177

(Fe4)
(F64)

Long (I32)

Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Bool

Double

Double

Double

Double

(F64)

(F64)

(F64)

(F64)

178

tt

hilim
lolim
iainf

kO

nl

mm

amp
uhys
ntime
rerrap

aerrph

maxdev

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Setpoint weighting — proportional part 40.0 ®1.0
Setpoint weighting — derivative part 10.0
Tracking time constant. J0.0 ®1.0
Upper limit of the controller output 1.0
Lower limit of the controller output ®-1.0
Type of apriori information o1

1 ... No apriori information

2 ... Astatic process (process with integration)

3 Low order process

4 Static process + slow closed loop step response

5 ... Static process + middle fast (normal) closed loop

step response

6 Static process + fast closed loop step response
Static gain of the process (must be provided in case of iainf =
3,4,5) ©1.0
Maximum number of half-periods for estimation of frequency
response point ©20
Maximum number of half-periods for averaging ©4
Relay controller amplitude 0.1

Relay controller hysteresis
Length of noise amplitude estimation period at the beginning of
the tuning experiment [g] ©5.0
Termination value of the oscillation amplitude relative error
©0.1
Termination value of the absolute error in oscillation phase
©10.0

Maximal admissible deviation error from the initial steady state
©1.0

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Long (I32)
Long (I32)
Double (F64)

Double (F64)
Double (F64)

Double (F64)
Double (F64)

Double (F64)

It is recommended not to change the parameters nl, mm, ntime, rerrap and aerrph.

179

PIDE — PID controller with defined static error

Block Symbol Licence: ADVANCED

Function Description

The PIDE block is a basis for creating a modified PI(D) controller which differs from
the standard PI(D) controller (the PIDU block) by having a finite static gain (in fact,
the value € which causes the saturation of the output is entered). In the simplest case
it can work autonomously and provide the standard functionality of the modified PID
controller with two degrees of freedom in the automatic (MAN = off) or manual mode
(MAN = on).

If in automatic mode and if the saturation limits are not active, the controller im-
plements a linear control law given by

U(s) = K |bW(s) =Y (5) + 75 Fls) + Tflj (W (s) = Y ()| +2(5),
! ‘N
where ke
P =1 ke

U(s) is the Laplace transform of the manipulated variable mv, W (s) is the Laplace
transform of the setpoint sp, Y (s) is the Laplace transform of the process variable pv,
E(s) is the Laplace transform of the deviation error, Z(s) is the Laplace transform of the
feedforward control variable dv and K, T;, Ty, N, € (= b,/100), b and ¢ are the controller
parameters. The sign of the right hand side depends on the parameter RACT. The range of
the manipulated variable mv (position controller output) is limited by parameters hilim,
lolim.

By connecting the output mv of the controller to the controller input tv and properly
setting the tracking time constant tt we obtain the bumpless operation of the controller
in the case of the mode switching (manual, automatic) and also the correct operation of
the controller when saturation of the output mv occurs (antiwindup).

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. In this mode the inner controller state tracks the signal connected to the tv
input so the successive switching to the automatic mode is bumpless. But the tracking
is not precise for € > 0.

180

Inputs

dv
sp
PV
tv
hv
MAN

Outputs

mv
de
SAT

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value
Manual or automatic mode

off ... Automatic mode
on Manual mode

Manipulated variable (controller output)

Deviation error
Saturation flag

off ... The controller implements a linear control law

on The controller output is saturated

Parameters

irtype

RACT

ti
td
nd

tt

bp

hilim
lolim

Controller type (control law)

1 ... D 4 P
2 ..., I 5 PD
3 ... ID 6 PI

Reverse action flag
off ... Higher mv — higher pv
on Higher mv — lower pv

Controller gain K

Integral time constant 7T;

Derivative time constant Ty
Derivative filtering parameter N
Setpoint weighting — proportional part
Setpoint weighting — derivative part

©6

10.0 ®1.
10.0 ®4.
10.0 ®1.
10.0 ®10.
10.0 ®1.

l0.

O O O O O O

Tracking time constant. No meaning for controllers without

integrator.

Static error coefficient

Upper limit of the controller output
Lower limit of the controller output

10.0 o1.

©1.
o-1.

0

0
0

Double
Double
Double
Double
Double
Bool

Double
Double
Bool

(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)

Long (I32)

Bool

Double
Double
Double
Double
Double
Double
Double

Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

PIDGS — PID controller with gain scheduling

Block Symbol

Function Description

The functionality of the PIDGS block is

181

Licence: ADVANCED

completely equivalent to the PIDU block. The

only difference is that the PIDGS block has a at most six sets of basic PID controller
parameters and allow bumpless switching of these sets by the ip (parameter set index)
or vp inputs. In the latter case it is necessary to set GSCF = on and provide an array of
threshold values thsha. The following rules define the active parameter set: the set 0 is
active for vp < thrsha(0), the set 1 for thrsha(l) < vp < thrsha(2) etc. till the set 5
for thrsha(5) < vp. The index of the active parameter set is available at the kp output.

Inputs

dv
sp
pv
tv
hv
MAN

IH

ip
vp

Outputs

mv
dmv
de

SAT

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode
on Manual mode
Integrator hold
off ... Integration enabled
on Integration disabled
Parameter set index 10 15

Switching analog signal

Manipulated variable (controller output)
Controller velocity output (difference)
Deviation error

Saturation flag

off ... The controller implements a linear control law
on The controller output is saturated

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

Bool

Long (I32)
Double (F64)

Double (F64)
Double (F64)
Double (F64)
Bool

182

kp

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Active parameter set index

Parameters

hilim
lolim
dz
icotype

npars
GSCF

hys
irtypea

RACTA

ka

tia

tda

nda

ba

ca

tta

thrsha

Upper limit of the controller output ®1.0
Lower limit of the controller output »-1.0
Dead zone
Controller output type o1

1..... Analog output

2 ... Pulse width modulation (PWM)

3 ... Step controller unit with position feedback (SCU)

4 ... Step controller unit without position feedback (SCUV)
Number of controller parameter sets ©6

Switch parameters by analog signal vp
off ... Index-based switching

on Analog signal based switching

Hysteresis for controller parameters switching

Vector of controller types (control laws) ©[6 6 6 6 6 6]
1 ... D 4 P 7 .. PID
2 ... I 5 PD
3 ... ID 6 PI

Vector of reverse action flags ®[0 0000 0]
0 Higher mv — higher pv
1 ..., Higher mv — lower pv

Vector of controller gains K ®[1.0 1.0 1.0 1.0 1.0 1.0]
Vector of integral time constants T;

©®[4.0 4.0 4.0 4.0 4.0 4.0]
Vector of derivative time constants T

®»[1.0 1.0 1.0 1.0 1.0 1.0]
Vector of derivative filtering parameters N

®[10.0 10.0 10.0 10.0 10.0 10.0]

Setpoint weighting factors — proportional part

®[1.0 1.0 1.0 1.0 1.0 1.0]
Setpoint weighting factors — derivative part

®[0.0 0.0 0.0 0.0 0.0 0.0]
Vector of tracking time constants

®»[1.0 1.0 1.0 1.0 1.0 1.0]

Vector of thresholds for switching the parameters
®[0.1 0.2 0.3 0.4 0.5 0]

Long (I32)

Double
Double
Double

(F64)
(F64)
(F64)

Long (I32)

Long (I32)

Bool

Double

(F64)

Byte (U8)

Bool

Double

Double

Double

Double

Double

Double

Double

Double

(F64)
(F64)

(F64)

(F64)

(F64)

(F64)

(F64)

(F64)

183

PIDMA — PID controller with moment autotuner

Block Symbol Licence: AUTOTUNING
dv
P gmy
pv de
w _SAT
TBSY
hv o TE
MAN o
IH pk
TUNE p‘;}j'
TBRK pnd
TAFF P2
ips

PIDMA

Function Description

The PIDMA block has the same control function as the PIDU block. Additionally it is
equipped with the moment autotuning function.

In the automatic mode (MAN = off), the block PIDMA implements the PID control
law with two degrees of freedom in the form

1 Tys

Us) = K {bW(S) ~Y(8) + 7 W(s) ~ Y (o)) + i1

[eW (s) - Y(S)]} +Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W(s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, T;, Ty, N, b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output)
is limited by parameters hilim, lolim. The parameter dz determines the dead zone in
the integral part of the controller. The integral part of the control law can be switched
off and fixed on the current value by the integrator hold input IH = on. For the proper
function of the controller it is necessary to connect the output mv of the controller to the
controller input tv and properly set the tracking time constant tt.

The rule of thumb for a PID controller is tt ~ +/T;1y. For a PI controller the formula
is tt ~ T;/2. In this way we obtain the bumpless operation of the controller in the case of
the mode switching (manual, automatic) and also the correct operation of the controller
when saturation of the output mv occurs (antiwindup).

The additional outputs dmv, de and SAT generate the velocity output (difference of
mv), deviation error and saturation flag, respectively.

If the PIDMA block is connected with the block SCUV to configure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to 4
and the meaning of the outputs mv and dmv and SAT is modified in the following way: mv
and dmv give the PD part and difference of I part of the control law, respectively, and

184 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor ¢
should be zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDMA block is quite clear from the following
diagram:

o
RACT L.

sp o) ' AUT .
pv Q mv
3 —p—o 5

RACT

* MAN v >
g 5
TA/N.s+1 iff 0
) 2 % dmv
RACT - —M

K
> |_C -1 K
2 Ti

0>——>1—o] 1

de
»(3

2z
N
L

SAT

R
>
AND
N »{ior w

icotype=SCUV

ES
) 4
G
A
f‘

30 6

The block PIDMA extends the control function of the standard PID controller by the
built in autotuning feature. Before start of the autotuner the operator have to reach the
steady state of the process at a suitable working point (in manual or automatic mode)
and specify the required type of the controller ittype (PI or PID) and other tuning
parameters (iainf, DGC, tdg, tn, amp, dy and ispeed). The identification experiment is
started by the input TUNE (input TBRK finishes the experiment). In this mode (TBSY = on),
first of all the noise and possible drift gradient (DGC = on) are estimated during the user
specified time (tdg+tn) and then the rectangle pulse is applied to the input of the process
and the first three process moments are identified from the pulse response. The amplitude
of the pulse is set by the parameter amp. The pulse is finished when the process variable
pv deviates from the steady value more than the dy threshold defines. The threshold is
an absolute difference, therefore it is always a positive value. The duration of the tuning
experiment depends on the dynamic behavior of the process. The remaining time to the
end of the tuning is provided by the output trem.

If the identification experiment is properly finished (TE = off) and the input ips
is equal to zero, then the optimal parameters immediately appear on the block outputs
pk, pti, ptd, pnd, pb, pc. In the opposite case (TE = on) the output ite specifies the
experiment error more closely. Other values of the ips input are reserved for custom
specific purposes.

The function of the autotuner is illustrated in the following picture.

185

mv0+amp

mv0

sp

pvO+dy
pvO

TBSY

phase 0 1 2 3 4
0 t1 t2 t3 tats

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be finished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

At the end of the experiment (TBSY on—off), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

Inputs
dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool
off ... Automatic mode
on Manual mode
IH Integrator hold Bool
off ... Integration enabled
on Integration disabled
TUNE Start the tuning experiment (off—on) or force transition to the Bool
next tuning phase (see the description of the ite output)
TBRK Stop the tuning experiment Bool
TAFF Tuning affirmation; determines the way the computed Bool
parameters are handled
off ... Parameters are only computed

on Parameters are set into the control law

186 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

ips Meaning of the output signals pk, pti, ptd, pnd, pb and pc Long (I32)
0 Designed parameters k, ti, td, nd, b and c of the
PID control law
1 ..., Process moments: static gain (pk), resident time

constant (pti), measure of the system response
length (ptd)

2 ... Three-parameter first-order plus dead-time model:
static gain (pk), dead-time (pti), time constant
(ptd)

3 ... Three-parameter second-order plus dead-time model

with double time constant: static gain (pk),
dead-time (pti), time constant (ptd)

4 ... Estimated boundaries for manual fine-tuning of the
PID controller (irtype = 7) gain k: upper boundary
kp; (pk), lower boundary k;, (pti)

>99 ... Reserved for diagnostic purposes
Outputs
mv Manipulated variable (controller output) Double (F64)
dmv Controller velocity output (difference) Double (F64)
de Deviation error Double (F64)
SAT Saturation flag Bool
off ... The controller implements a linear control law
on The controller output is saturated
TBSY Tuner busy flag Bool
TE Tuning error Bool
off ... Autotuning successful
on An error occurred during the experiment
ite Error code Long (I32)
Tuning error codes (after the experiment):
0 No error or waiting for steady state
1 ... Too small pulse getdown threshold
2 ... Too large pulse amplitude
3 ... Steady state condition violation
4 ... Too small pulse aplitude
5 Peak search procedure failure
6 Output saturation occurred during experiment
7 ..., Selected controller type not supported
8 Process not monotonous
9 Extrapolation failure
10 Unexpected values of moments (fatal)
11 Abnormal manual termination of tuning
12 Wrong direction of manipulated variable

100 ... Manual termination of tuning (warning)

trem
pk
pti
ptd
pnd
pb

pc

Parameters

irtype

RACT

ti

td

nd

Tuning phases codes (during the experiment):

0 Steady state reaching before the start of the
experiment,

-1 Drift gradient and noise estimation phase

-2 Pulse generation phase

-3 Searching the peak of system response

-4 Estimation of the system response decay rate

Remark about terminating the tuning phases
TUNE .. The rising edge of the TUNE input during the phases

-2, -3 and -4 causes the finishing of the current
phase and transition to the next one (or finishing
the experiment in the phase -4).

Estimated time to finish the tuning experiment [s]

Proposed controller gain K (ips = 0)

Proposed integral time constant T; (ips = 0)

Proposed derivative time constant T,; (ips = 0)

Proposed derivative component filtering N (ips = 0)
Proposed weighting factor — proportional component (ips = 0)
Proposed weighting factor — derivative component (ips = 0)
Controller type (control law) ©86
1 ..., D 4 P 7 ... PID
2 ... I 5 PD
3 ... ID 6 PI

Reverse action flag
off ... Higher mv — higher pv
on Higher mv — lower pv
Controller gain K. By definition, the value 0 turns the controller
off. Negative values are not allowed, use the RACT parameter for
such a purpose. 40.0 ®1.0
Integral time constant 7;. The value O disables the integrating
part (the same effect as disabling it by the irtype parameter).
40.0 4.0
Derivative time constant Ty. The value 0 disables the derivative
part (the same effect as disabling it by the irtype parameter).
10.0 ®1.0
Derivative filtering parameter N. The value 0 disables the
derivative part (the same effect as disabling it by the irtype
parameter). 10.0 ©®10.0
Setpoint weighting — proportional part 40.012.0 ®1.0
Setpoint weighting — derivative part 40.012.0

Double
Double
Double
Double
Double
Double

Double

187

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)

Long (I32)

Bool

Double

Double

Double

Double

Double
Double

(F64)

(F64)

(F64)

(F64)

(F64)
(F64)

188

tt

hilim
lolim
dz
icotype

ittype

iainf

DGC

tdg
tn
amp

dy

ispeed

ipid

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Tracking time constant. The value 0 stands for an implicit
value, which is T;/2 or «/T;Ty (see above) for controllers with
integrating part. For controllers without integrating part, the
value O disables tracking. If tracking is needed for a P or PD
controller, it can be enabled by entering a positive value greater
than the sampling time. It is not possible to turn off tracking for
controllers with the integrating part (due to the windup effect).

10.0 ®1.0
Upper limit of the controller output 1.0
Lower limit of the controller output ®-1.0
Dead zone
Controller output type o1
1 ... Analog output
2 ... Pulse width modulation (PWM)
3 ... Step controller unit with position feedback (SCU)
4 ... Step controller unit without position feedback (SCUV)
Controller type to be designed ©6
6 PI controller
7 ..., PID controller
Type of apriori information o1
1 ... Static process
2 ..., Astatic process
Drift gradient compensation ®Gon
off ... Disabled
on Enabled
Drift gradient estimation time [s] ©60.0
Length of noise estimation period [s] ®5.0
Tuning pulse amplitude 0.5
Tuning pulse get down threshold (absolute difference from the
steady pv value) 40.0 ®0.1
Desired closed loop speed 2
1..... Slow closed loop
2 ... Normal (middle fast) closed loop
3 ... Fast closed loop
PID controller form o1
1 ... Parallel form

2 ... Series form

Double (F64)

Double (F64)
Double (F64)
Double (F64)
Long (I32)

Long (I32)

Long (I32)

Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)

Long (I32)

Long (I32)

189

PIDU — PID controller unit

Block Symbol Licence: STANDARD

Function Description

The PIDU block is a basic block for creating a complete PID controller (or P, I, PI, PD,
PID, PI+S). In the most simple case it works as a standalone unit with the standard
PID controller functionality with two degrees of freedom. It can operate in automatic
mode (MAN = off) or manual mode (MAN = on).

In the automatic mode (MAN = off), the block PIDU implements the PID control law
with two degrees of freedom in the form

U(s) =+K {bW(S) -Y(s)+ i [W(s) — Y (s)] + Tdfij_l
N

7 W (s) - Y<s>1} +2(s

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y'(s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, T;, Ty, N, b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output)
is limited by parameters hilim, lolim. The parameter dz determines the dead zone in
the integral part of the controller. The integral part of the control law can be switched
off and fixed on the current value by the integrator hold input IH (IH = on). For the
proper function of the controller it is necessary to connect the output mv of the controller
to the controller input tv and properly set the tracking time constant tt.

The rule of thumb for a PID controller is tt ~ +/T;1y. For a PI controller the formula
is tt ~ T;/2. In this way we obtain the bumpless operation of the controller in the case of
the mode switching (manual, automatic) and also the correct operation of the controller
when saturation of the output mv occurs (antiwindup).

By adjusting the tt parameter, it is possible to tune the behaviour at saturation limits
(so-called bouncing from limits due to noise) and when switching multiple controllers
(bump in the controller output occurs when switching controllers while the control error
is non-zero).

The additional outputs dmv, de and SAT generate the velocity output (difference of
mv), deviation error and saturation flag, respectively.

If the PIDU block is connected with the SCUV block to configure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to

190

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

4 and the meaning of the outputs mv and dmv and SAT is modified in the following way:
mv and dmv give the PD part and difference of I part of the control law, respectively, and
SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor ¢
should be zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDU block is quite clear from the following

diagram:
(@Dt
Sp O AUT o
V—@—} mv
pv —p—o No '®
: MAN >
| | O KTd.s \ 4 1
TA/N.s+1 diff 0
0 dmv
RACT > Ly
|/ — K 0 0>——>14 1
= Jl Ti .,
rH1 J
0 Jor|| 1
k| Tt
. = ge
T >)
el ~ 0| sar
icotype=SCUV
Inputs
dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool
off ... Automatic mode
on Manual mode
IH Integrator hold Bool
off ... Integration enabled
on Integration disabled
Outputs
mv Manipulated variable (controller output) Double (F64)
dmv Controller velocity output (difference) Double (F64)
de Deviation error Double (F64)

SAT

Parameters

irtype

RACT

ti

td

nd

tt

hilim
lolim
dz
icotype

Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated
Controller type (control law) ©6
1 ... D 4 ... P T ... PID
2 ... I 5 PD
3 ... ID 6 PI

Reverse action flag
off ... Higher mv — higher pv
on Higher mv — lower pv
Controller gain K. By definition, the value 0 turns the controller
off. Negative values are not allowed, use the RACT parameter for
such a purpose. 10.0 ®1.0
Integral time constant 7;. The value O disables the integrating
part (the same effect as disabling it by the irtype parameter).
10.0 ®4.0
Derivative time constant T,;. The value 0 disables the derivative
part (the same effect as disabling it by the irtype parameter).
10.0 ®1.0
Derivative filtering parameter N. The value 0 disables the
derivative part (the same effect as disabling it by the irtype

parameter). 10.0 ®10.0
Setpoint weighting — proportional part 40.012.0 ®1.0
Setpoint weighting — derivative part J0.012.0

Tracking time constant. The value 0 stands for an implicit
value, which is T;/2 or /T;Ty (see above) for controllers with
integrating part. For controllers without integrating part, the
value 0 disables tracking. If tracking is needed for a P or PD
controller, it can be enabled by entering a positive value greater
than the sampling time. It is not possible to turn off tracking for
controllers with the integrating part (due to the windup effect).

10.0 ®1.0

Upper limit of the controller output 1.0
Lower limit of the controller output ®-1.0
Dead zone
Controller output type o1

1 ... Analog output

2 ... Pulse width modulation (PWM)

3 ... Step controller unit with position feedback (SCU)

4 ..., Step controller unit without position feedback (SCUV)

Bool

191

Long (I32)

Bool

Double

Double

Double

Double

Double
Double
Double

Double
Double
Double

(F64)

(F64)

(F64)

(Fe4)

(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

Long (I32)

192

PIDUI — PID controller unit

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Block Symbol

Function Description

with variable parameters

Licence: ADVANCED

The functionality of the PIDUI block is completely equivalent to the PIDU block. The only
difference is that the PID control algorithm parameters are defined by the input signals
and therefore they can depend on the outputs of other blocks. This allows creation of
special adaptive PID controllers.

Inputs

dv
sp
PV
tv
hv
MAN

IH

ti
td
nd

Outputs

mv
dmv
de

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode

on Manual mode
Integrator hold

off ... Integration enabled

on Integration disabled

Controller gain K

Integral time constant 7T;

Derivative time constant 1
Derivative filtering parameter N
Setpoint weighting — proportional part
Setpoint weighting — derivative part

Manipulated variable (controller output)
Controller velocity output (difference)
Deviation error

Double
Double
Double
Double
Double
Bool

Bool

Double
Double
Double
Double
Double
Double

Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

SAT

Saturation flag

Parameters

irtype

RACT

tt
hilim
lolim
dz
icotype

off ... The controller implements a linear control law
on The controller output is saturated
Controller type (control law) ©6
1 ... D 4 ... P T ... PID
2 ... I 5 PD
3 ... ID 6 PI

Reverse action flag

off ... Higher mv — higher pv

on Higher mv — lower pv
Tracking time constant ®1.0
Upper limit of the controller output 1.0
Lower limit of the controller output ®-1.0
Dead zone
Controller output type o1

1 ... Analog output

2 ... Pulse width modulation (PWM)

3 ... Step controller unit with position feedback (SCU)

4 ..., Step controller unit without position feedback (SCUV)

193

Bool

Long (I32)

Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

194 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

POUT — Pulse output

Block Symbol Licence: STANDARD

POUT

Function Description

The POUT block shapes the input pulses U in such a way, that the output pulse Y has a
duration of at least dtime seconds and the idle period between two successive output
pulses is at least btime seconds. The input pulse occuring sooner than the period of
btime seconds since the last falling edge of the output signal elapses has no effect on the
output signal Y.

Input

U Logical input of the block Bool
Output

Y Logical output of the block Bool
Parameters

dtime Minimum width of the output pulse [s] ®1.0 Double (F64)

btime Minimum delay between two successive output pulses [s] ©®1.0 Double (F64)

195

PRGM — Setpoint programmer

Block Symbol Licence: STANDARD

Function Description

The PRGM block generates functions of time (programs) composed of n linear parts
defined by (n + 1)-dimensional vectors of time (tm = [tg,...,t,]) and output values
(y = [Y0,---,Yn]). The generated time-course is continuous piecewise linear, see figure
below. This block is most commonly used as a setpoint generator for a controller. The
program generation starts when RUN = on. In the case of RUN = off the programmer is
set back to the initial state. The input DEF = on sets the output sp to the value spv.
It follows a ramp to the nearest future node of the time function when DEF = off. The
internal time of the generator is not affected by this input. The input HLD = on freezes
the output sp and the internal time, thus also the outputs tsc, tt and rt. The program
follows from freezing point as planned when HLD = off unless the input CON = on at the
moment when the signal HLD on—off. In that case the program follows a ramp to reach
the node with index ind in time trt. The node index ind must be equal to or higher
than the index of current sector isc (at the moment when HLD on—off). If RPT = on,
the program is generated repeatedly.

isc 1 2 n

n _— I
Yo 1/ \» Yo

tsc

tt rt

current
instant

Inputs
RUN Enable execution Bool
DEF Initialize sp to the value of spv Bool
spv Initializing constant Double (F64)

HLD Output and timer freezing Bool

196 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL
CON Continue from defined node Bool
ind Index of the node to continue from Long (I32)
trt Time to reach the defined node with index ind Double (F64)
RPT Repetition flag Bool
Outputs
sp Setpoint variable (function value of the time function at given Double (F64)
time)
isc Current function sector Long (I32)
tsc Time elapsed since the start of current sector Double (F64)
tt Time elapsed since the start of program generation Double (F64)
Tt Remaining time till the end of program Double (F64)
CNF Flag indicating that the configured curve is being followed Bool
E Error flag — the node times are not ascending Bool
Parameters
n Number of sectors J1 110000000 ®2 Long (I32)
tmunits Time units ®1 Long (I32)
1 ... seconds
2 ... minutes
3 ... hours
tm (n + 1)-dimensional vector of ascending node times ©[0 1 2] Double (F64)
y (n + 1)-dimensional vector of node values (values of the time Double (F64)
function) ®[0 1 0]

197

PSMPC — Pulse-step model predictive controller

Block Symbol Licence: ADVANCED

SP v
pv dmv

de
Vv sAT
hv pve
maAN E
PSMPC

Function Description

The PSMPC block can be used for control of hardly controllable linear time-invariant
systems with manipulated value constraints (e.g. time delay or non-minimum phase
systems). It is especially well suited for the case when fast transition without overshoot
from one level of controlled variable to another is required. In general, the PSMPC block
can be used where the PID controllers are commonly used.

94 _— o)
93) h)

h(3)

=

a(2)
h(2)
a(1)
h(1)

0 Ts 2Ts 3Ts 4Ts NTs

time

The PSMPC block is a predictive controller with explicitly defined constraints on the
amplitude of manipulated variable.

The prediction is based on the discrete step response g(j), j =1,..., N is used. The
figure above shows how to obtain the discrete step response g(j), 7 =0,1,..., N and the
discrete impulse response h(j), j =0,1,..., N with sampling period T from continuous
step response. Note that N must be chosen such that N -Tg > tg5, where tg5 is the time
to reach 95 % of the final steady state value.

For stable, linear and t-invariant systems with monotonous step response it is also
possible to use the moment model set approach [4] and describe the system by only
3 characteristic numbers &, p, and o2, which can be obtained easily from a very short

198 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

and simple experiment. The controlled system can be approximated by first order plus
dead-time system

K
TS+1'6_DS, k=K, pu=1+D, o®=r> (7.1)

Froppr(s) =

or second order plus dead-time system

K
— .67D37 K/:K’ M:QT—’—D, 0'2:27-2 (72)
(ts+1)

Fsoppr(s) =
with the same characteristic numbers. The type of approximation is selected by the
imtype parameter.

To lower the computational burden of the open-loop optimization, the family of
admissible control sequences contains only sequences in the so-called pulse-step shape
depicted below:

+ +
U — ur
p0—1 .
u
ur P,=0
u u”
n, n, Nc n, n, Nc

Note that each of these sequences is uniquely defined by only four numbers nq,n9o €
{0,...,N¢}, po and u™® € (u™,ut), where No € {0,1,...} is the control horizon and
u~,u" stand for the given lower and upper limit of the manipulated variable. The on-line
optimization (with respect to po, n1, ne and u®) minimizes the criterion

N N¢
I=e(k+ilk)>+ X Ad(k+ilk)* — min, (7.3)
i=N1 =0

where é(k + i|k) is the predicted control error at time k over the coincidence interval
i € {N1, Na}, Au(k + i|k) are the differences of the control signal over the interval i €
{0, N¢'} and A penalizes the changes in the control signal. The algorithm used for solving
the optimization task (7.3) combines brute force and the least squares method. The value
u™ is determined using the least squares method for all admissible combinations of pg,
n1 and no and the optimal control sequence is selected afterwards. The selected sequence
in the pulse-step shape is optimal in the open-loop sense. To convert from open-loop to
closed-loop control strategy, only the first element of the computed control sequence is
applied and the whole optimization procedure is repeated in the next sampling instant.

The parameters Ny, No, Heo, and A in the criterion (7.3) take the role of design
parameters. Only the last parameter A is meant for manual tuning of the controller.
In the case the model in the form (7.1) or (7.2) is used, the parameters N; and Ny
are determined automatically with respect to the p and o2 characteristic numbers. The

199

controller can be then effectively tuned by adjusting the characteristic numbers &, p and

o2

Warning

It is necessary to set the nsr parameter to sufficiently large number to avoid Mat-
lab/Simulink crash when using the PSMPC block for simulation purposes. Especially when
using FOPDT or SOPDT model, the nsr parameter must be greater than the length of
the internally computed discrete step response.

Inputs

sp
pv
tv
hv
MAN

Outputs

mv
dmv
de

SAT

pve

iE

Parameters

nc
npl
np2
lambda
umax

umin

Setpoint variable

Process variable

Tracking variable (applied control signal)
Manual value

Manual or automatic mode
off ... Automatic mode
on Manual mode

Manipulated variable (controller output)

Controller velocity output (difference)

Deviation error

Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated

Predicted process variable based on the controlled process model

Error code
0 No error
1..... Incorrect FOPDT model
2 ... Incorrect SOPDT model
3 ... Invalid step response sequence

Control horizon length (N¢) ©b
Start of coincidence interval (Ny) ®1
End of coincidence interval (N3) ©10
Control signal penalization coefficient () ©0.05
Upper limit of the controller output (u™) ®1.0
Lower limit of the controller output (u ™) ®-1.0

Double
Double
Double
Double
Bool

Double
Double
Double
Bool

Double

(F64)
(F64)
(F64)
(F64)

(F64)
(F64)
(F64)

(Fe4)

Long (I32)

Long (I32)
Long (I32)
Long (I32)

Double
Double
Double

(F64)
(F64)
(Fe4)

200 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

imtype Controlled process model type ®3 Long (I32)

1 ... FOPDT model (7.1)

2 ... SOPDT model (7.2)

3 ... Discrete step response
kappa Static gain (k) 1.0 Double (F64)
mu Resident time constant (u) (©20.0 Double (F64)
sigma Measure of the system response length (vo2) ©10.0 Double (F64)
nsr Length of the discrete step response (N), see the warning above Long (I32)

110 110000000 ®11

sT Discrete step response sequence ([g(1),...,g(N)]) Double (F64)

®[0 0.2642 0.5940 0.8009 0.9084 0.9596 0.9826 0.9927 0.9970 0.9988 0.9995]

201

PWM — Pulse width modulation

Block Symbol Licence: STANDARD
u ORb

PWM

Function Description

The PWM block implements a pulse width modulation algorithm for proportional actua-
tors. In the general, it is assumed the input signal u ranges in the interval from -1 to +1.
The width L of the output pulse is computed by the expression:

L = pertmx |u,

where pertm is the modulation time period. If u > 0 (u < 0), the pulse is generated in
the output UP (DN). However, the width of the generated pulses are affected by other
parameters of the block. The asymmetry factor asyfac determines the ratio of negative
pulses duration to positive pulses duration. The modified pulse widths are given by:

L for asyfac <1.0
L/asyfac for asyfac > 1.0
L x asyfac for asyfac <1.0
L for asyfac > 1.0

if u>0 then L(UP):= {

if u<O then L(DN):= {

Further, if the computed width is less than minimum pulse duration dtime the width
is set to zero. If the pulse width differs from the modulation period pertm less than
minimum pulse break time btime then width of the pulse is set to pertm. In the case the
positive pulse is succeeded by the negative one (or vice versa) the latter pulse is possibly
shifted in such a way that the distance between these pulses is at least equal to the
minimum off time offtime. If SYNCH = on, then the change of the input value u causes
the immediate recalculation of the current pulse widths if a synchronization condition is
violated.

Input

u Analog input of the block Double (F64)
Outputs

UP The "up" signal Bool

DN The "down" signal Bool

202 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Parameters
pertm Modulation period length [s] ©10.0 Double (F64)
dtime Minimum width of the output pulse [s] 0.1 Double (F64)
btime Minimum delay between output pulses [s] ©0.1 Double (F64)
offtime Minimum delay when altering direction [s] 1.0 Double (F64)
asyfac Asymmetry factor ©®1.0 Double (F64)
SYNCH Synchronization flag of the period start Bool
off ... Synchronization disabled

on Synchronization enabled

RLY — Relay with hysteresis

Block Sym

bol
7,

RLY

Function Description

203

Licence: STANDARD

The RLY block transforms the input signal u to the output signal y according to the

figure below.

Input

u

Output

y

Parameters

ep
en
ap
an

yO

enY A

ep

Analog input of the block

Analog output of the block

The value u > ep causes y = ap ("On")
The value u < en causes y = an ("Oft")
Output value y in the "On" state
Output value y in the "Off" state
Initial output value at start-up

1.0
©®-1.0
1.0
©®-1.0

Double

Double

Double
Double
Double
Double
Double

(F64)

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)

204 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SAT — Saturation with variable limits

Block Symbol Licence: STANDARD

Y
hi HLp
lo LLp
SAT

Function Description

The SAT block copies the input u to the output y if the input signal satisfies lolim < u
and u < hilim, where lolim and hilim are state variables of the block. If u < lolim
(u > hilim), then y = lolim (y = hilim). The upper and lower limits are either
constants (HLD = on) defined by parameters hilim0 and lolim0 respectively or input-
driven variables (HLD = off, hi and lo inputs). The maximal rate at which the active
limits may vary is given by time constants tp (positive slope) and tn (negative slope).
These rates are active even if the saturation limits are changed manually (HLD = on)
using the hilim0 and lolimQ parameters. To allow immediate changes of the saturation
limits, set tp = 0 and tn = 0. The HL and LL outputs indicate the upper and lower
saturation respectively.

If necessary, the hilim0 and lolim0 parameters are used as initial values for the
input-driven saturation limits.

Inputs
u Analog input of the block Double (F64)
hi Upper limit of the output signal (for the case HLD = off) Double (F64)
lo Lower limit of the output signal (for the case HLD = off) Double (F64)
Outputs
y Analog output of the block Double (F64)
HL Upper limit saturation indicator Bool
LL Lower limit saturation indicator Bool
Parameters
tp Time constant defining the maximal positive slope of active limit Double (F64)
changes 1.0
tn Time constant defining the maximum negative slope of active Double (F64)
limit changes ®1.0
hilimO Upper limit of the output (valid for HLD = on) 1.0 Double (F64)

lolim0 Lower limit of the output (valid for HLD = on) ®-1.0 Double (F64)

205

HLD Fixed saturation limits ®on Bool
off ... Variable limits on Fixed limits

206 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SC2FA — State controller for 2nd order system with frequency
autotuner

Block Symbol Licence: AUTOTUNING
rgv
dv g7
;5 |DBsx
e
MAN X
TUne JOE
HLD
RK PP
SETC P3
VFR P4
p5
p6

Function Description

The SC2FA block implements a state controller for 2nd order system (7.4) with frequency
autotuner. It is well suited especially for control (active damping) of lightly damped
systems (£ < 01). But it can be used as an autotuning controller for arbitrary system
which can be described with sufficient precision by the transfer function

b18 + b()
52 42605 4+ Q27

F(s) = (7.4)

where >0 is the natural (undamped) frequency, &, 0<{ <1, is the damping coefficient
and by, by are arbitrary real numbers. The block has two operating modes: "Identification
and design mode" and "Controller mode".

The "lIdentification and design mode" is activated by the binary input ID = on. Two
points of frequency response with given phase delay are measured during the identifica-
tion experiment. Based on these two points a model of the controlled system is built.
The experiment itself is initiated by the rising edge of the RUN input. A harmonic sig-
nal with amplitude uamp, frequency w and bias ubias then appears at the output mv.
The frequency runs through the interval (wb, wf), it increases gradually. The current fre-
quency is copied to the output w. The rate at which the frequency changes (sweeping) is
determined by the cp parameter, which defines the relative shrinking of the initial period
Ty, = T% of the exciting sine wave in time Ty, thus

wb wb T,

Crh = = =
Pw(T) wbeTs

The cp parameter usually lies within the interval cp € (0,95;1). The lower the damping
coefficient € of the controlled system is, the closer to one the cp parameter must be.

207

At the beginning of the identification period the exciting signal has a frequency of
w = wb. After a period of stime seconds the estimation of current frequency response
point starts. Its real and imaginary parts are available at the xre and xim outputs. If
the MANF parameter is set to 0, then the frequency sweeping is stopped two times during
the identification period. This happens when points with phase delay of phl and ph2 are
reached for the first time. The breaks are stime seconds long. Default phase delay values
are —60° and —120°, respectively, but these can be changed to arbitrary values within the
interval (—360°,0°), where phl > ph2. At the end of each break an arithmetic average
is computed from the last iavg frequency point estimates. Thus we get two points of
frequency response which are successively used to compute the controlled process model
in the form of (7.4). If the MANF parameter is set to 1, then the selection of two frequency
response points is manual. To select the frequency, set the input HLD = on, which stops
the frequency sweeping. The identification experiment continues after returning the input
HLD to 0. The remaining functionality is unchanged.

It is possible to terminate the identification experiment prematurely in case of neces-
sity by the input BRK = on. If the two points of frequency response are already identified
at that moment, the controller parameters are designed in a standard way. Otherwise
the controller design cannot be performed and the identification error is indicated by the
output signal IDE = on.

The IDBSY output is set to 1 during the "identification and design" phase. It is set
back to O after the identification experiment finishes. A successful controller design is
indicated by the output IDE = off. During the identification experiment the output iIDE
displays the individual phases of the identification: iIDE = —1 means approaching the
first point, 1IDE = 1 means the break at the first point, iIDE = —2 means approaching
the second point, 1IDE = 2 means the break at the second point and iIDE = —3 means
the last phase after leaving the second frequency response point. An error during the
identification phase is indicated by the output IDE = on and the output iIDE provides
more information about the error.

The computed state controller parameters are taken over by the control algorithm
as soon as the SETC input is set to 1 (i.e. immediately if SETC is constantly set to on).
The identified model and controller parameters can be obtained from the p1, p2, ..., p6
outputs after setting the ips input to the appropriate value. After a successful identifi-
cation it is possible to generate the frequency response of the controlled system model,
which is initiated by a rising edge at the MFR input. The frequency response can be read
from the w, xre and xim outputs, which allows easy confrontation of the model and the
measured data.

The "Controller mode" (binary input ID = off) has manual (MAN = on) and auto-
matic (MAN = off) submodes. After a cold start of the block with the input ID = off it
is assumed that the block parameters mb0, mbl, ma0 and mal reflect formerly identified
coefficients by, b1, ag and a; of the controlled system transfer function and the state con-
troller design is performed automatically. Moreover if the controller is in the automatic
mode and SETC = on, then the control law uses the parameters from the very beginning.
In this way the identification phase can be skipped when starting the block repeatedly.

208 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

b1.s+b0 | pv=y
wb,wf,cp x1=sinwt s2+al.s+al
- PROCESS
x2=coswt
GEN_SIN
- estimate estimate controller
F(jw) b0,b1,a0,a1 design
z1=b cos(wt+fi
w xre xim
RCN_SIN y
p1p2 p3 p4 p5 p6) 4

The diagram above is a simplified inner structure of the frequency autotuning part
of the controller. The diagram below shows the state feedback, observer and integra-
tor anti-wind-up. The diagram does not show the fact, that the controller design block
automatically adjusts the observer and state feedback parameters f1,..., f5 after iden-
tification experiment (and SETC = on).

209

P f1
mv
pv ::I_’ observer _»I v2n o + dv
Ll
sp > I
-de o 1 v3
s

uco

»| f4

G

v4
» disturb. V5
model

The controlled system is assumed in the form of (7.4). Another forms of this transfer
function are

(1)18 + bo)
F(s) = ——— .
<S> s+ ais+ agp (7 5)

and 02)
Ko (ts+1
F(s) = 5 (7.6)
5242605 + Q
The coefficients of these transfer functions can be found at the outputs p1,...,p6 after the
identification experiment (IDBSY = off). The output signals meaning is switched when
a change occurs at the ips input.

Inputs

dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)

hv Manual value Double (F64)

210 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

MAN Manual or automatic mode Bool
off ... Automatic mode on Manual mode
1D Identification or controller operating mode Bool
off ... Controller mode mode
on Identification and design
TUNE Start the tuning experiment (off—on), the exciting harmonic Bool
signal is generated
HLD Stop frequency sweeping Bool
BRK Termination signal Bool
SETC Flag for accepting the new controller parameters and updating Bool
the control law
off ... Parameters are only computed
on Parameters are accepted as soon as computed

off—on One-shot confirmation of the computed parameters

ips Switch for changing the meaning of the output signals Long (I32)
0 Two points of frequency response
pl ... frequency of the 1st measured point in rad/s

p2 ... real part of the 1st point

p3 ... imaginary part of the 1st point

p4 ... frequency of the 2nd measured point in rad/s
p5 ... real part of the 2nd point

p6 ... imaginary part of the 2nd point

1 ..., Second order model in the form (7.5)
pl ... by parameter
p2 ... by parameter
p3 ... a1 parameter
P4 ... ap parameter
2 ... Second order model in the form (7.6)
pl ... Ky parameter
p2 ... T parameter
p3 ... parameter in rad/s

p4 ... & parameter
p5 ... parameter in Hz

p6 ... resonance frequency in Hz
3 State feedback parameters
pl ... fi parameter
p2 ... fo parameter
p3 ... f3 parameter
P4 ... f4 parameter
p5 ... f5 parameter
MFR Generation of the parametric model frequency response at the w, Bool

xre and xim outputs (off—on triggers the generator)

Outputs

mv Manipulated variable (controller output) Double (F64)
de Deviation error Double (F64)

SAT

IDBSY

xXre
xim
epv
IDE

iIDE

pl..p6

Parameters

ubias
uamp
wb

wf

isweep

cp
iavg
alpha

xi
MANF

phil
ph2
stime
ralpha
rxi
acll
xicll

Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated
Identification running
off ... Identification not running
on Identification in progress

Frequency response point estimate - frequency in rad/s
Frequency response point estimate - real part
Frequency response point estimate - imaginary part
Reconstructed pv signal

Identification error indicator

off ... Successful identification experiment
on Identification error occurred
Error code

101 ... Sampling period too low

102 ... Error identifying one or both frequency response
point(s)

103 ... Manipulated variable saturation occurred during the
identification experiment

104 ... Invalid process model

Results of identification and design phase

Static component of the exciting harmonic signal
Amplitude of the exciting harmonic signal ®1.0
Frequency interval lower limit [rad/s] ©1.0
Frequency interval upper limit [rad/s] ©10.0
Frequency sweeping mode o1

1 ..., Logarithmic

2 ... Linear (not implemented yet)
Sweeping rate 10.571.0 ©®0.995
Number of values for averaging ®10
Relative positioning of the observer poles (in identification
phase) ©2.0
Observer damping coefficient (in identification phase) ©0.707
Manual frequency response points selection

off ... Disabled

on Enabled
Phase delay of the 1st point in degrees »-60.0
Phase delay of the 2nd point in degrees ©-120.0
Settling period [s] ©10.0
Relative positioning of the observer poles 4.0
Observer damping coefficient ©0.707

Relative positioning of the 1st closed-loop poles couple 1.0
Damping of the 1st closed-loop poles couple ©0.707

Bool

Bool

Double
Double
Double
Double
Bool

211

(F64)
(F64)
(F64)
(F64)

Long (I32)

Double

Double
Double
Double
Double

(Fe4)

(F64)
(F64)
(F64)
(F64)

Long (I32)

Double

(F64)

Long (I32)

Double

Double
Bool

Double
Double
Double
Double
Double
Double
Double

(F64)

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

212

INTGF

apcl
DISF

dom
dxi
acl2
xicl2
tt
hilim
lolim
mbilp
mbOp
malp
maOp

CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Integrator flag ®on

off ... State-space model without integrator

on Integrator included in the state-space model
Relative position of the real pole 1.0
Disturbance flag

off ... State space model without disturbance model

on Disturbance model is included in the state space

model

Disturbance model natural frequency 1.0
Disturbance model damping coefficient
Relative positioning of the 2nd closed-loop poles couple ©2.0
Damping of the 2nd closed-loop poles couple ®0.707
Tracking time constant ®1.0
Upper limit of the controller output ®1.0
Lower limit of the controller output »-1.0
Controlled system transfer function coefficient by
Controlled system transfer function coefficient bg 1.0
Controlled system transfer function coefficient a; 0.2
Controlled system transfer function coefficient ag 1.0

Bool

Double
Bool

Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

213

SCU — Step controller with position feedback

Block Symbol Licence: STANDARD

Function Description

The SCU block implements the secondary (inner) position controller of the step controller
loop. PIDU function block or some of the derived function blocks (PIDMA, etc.) is assumed
as the primary controller.

The SCU block processes the control deviation sp — pv by a three state element with
parameters (thresholds) thron and throff (see the TSE block, use parameters ep =
thron, epoff = throff, en = -thron and enoff = -throff). The parameter RACT
determines whether the UP or DN pulse is generated for positive or negative value of the
controller deviation. Two pulse outputs of the three state element are further shaped so
that minimum pulse duration dtime and minimum pulse break time btime are guaranteed
at the block UP and DN outputs. If signals from high and low limit switches of the valve
are available, they should be connected to the HS and LS inputs.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment /decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off—on) in the DVC input signal.

The control function of the SCU block is quite clear from the following diagram.

NOT UpP
NOTH o _,_

NOT DN
NOT AND B o T o | | AND

L

de
»(3

The complete structure of the three-state step controller is depicted in the following

214 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

figure.
Position Feedback Signal
Setpoint Y i~y l - Process Value
>—1 sp —: pv UP—Pplup ¥ ’E:AD{
— pv dmvp HS
L tv :t LS S Process
hv dep MUP DN—>DBN | o
MAN MDN
MAN/AUT IH SATp mdv MVD
DVC dep i
Valve Drive PIDU | P MAN V'\gﬁ,tg r||:)zr?\?e
SCU
Optional Connections
Inputs
sp Setpoint (output of the primary controller) Double (F64)
pv Controlled variable (position of the motorized valve drive) Double (F64)
HS Upper end switch (detects the upper limit position of the valve) Bool
LS Lower end switch (detects the lower limit position of the valve) Bool
MUP Manual UP signal Bool
MDN Manual DN signal Bool
mdv Manual differential value (requested position Double (F64)
increment /decrement with higher priority than direct signals
MUP /MDN)
DVC Differential value change command (off—on) Bool
MAN Manual or automatic mode Bool
off ... Automatic mode on Manual mode
Outputs
UP The "up" signal Bool
DN The "down" signal Bool
de Deviation error Double (F64)
Parameters
thron Switch-on value 10.0 ®0.02 Double (F64)
throff Switch-off value J0.0 ©®0.01 Double (F64)
dtime Minimum width of the output pulse [s] 10.0 ®0.1 Double (F64)
btime Minimum delay between two subsequent output pulses [s] to do Double (F64)

10.0 ®0.1

215

RACT Reverse action flag Bool
off ... Higher mv — higher pv
on Higher mv — lower pv
trun Motor time constant (determines the time during which the Double (F64)

motor position changes by one unit) 10.0 ®10.0

216 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SCUV — Step controller unit with velocity input

Block Symbol Licence: STANDARD

mv
dmv up

SAT
Hs DN

MDNPOS
mdv
DVC
maN MR

SCuv

Function Description

The block SCUV substitutes the secondary position controller SCU in the step controller
loop when the position signal is not available. The primary controller PIDU (or some of
the derived function blocks) is connected with the block SCUV using the block inputs mv,
dmv and SAT.

If the primary controller uses PI or PID control law (CWOI = off), then all three
inputs mv, dmv and SAT of the block SCUV are sequentially processed by the special
integration algorithm and by the three state element with parameters thron and throff
(see the TSE block, use parameters ep = thron, epoff = throff, en = -thron and
enoff = -throff). Pulse outputs of the three state element are further shaped in such
a way that the minimum pulse duration time dtime and minimum pulse break time
btime are guaranteed at the block outputs UP and DN. The parameter RACT determines
the direction of motor moving. Note, the velocity output of the primary controller is
reconstructed from input signals mv and dmv. Moreover, if the deviation error of the
primary controller with icotype = 4 (working in automatic mode) is less than its dead
zone (SAT = on), then the output of the corresponding internal integrator is set to zero.

The position pos of the valve is estimated by an integrator with the time constant
trun. If signals from high and low limit switches of the valve are available, they should
be connected to the inputs HS and LS.

If the primary controller uses P or PD control law (CWOI = on), then the deviation
error of the primary controller can be eliminated by the bias ub manually. In this case,
the control algorithm is slightly modified, the position of the motor pos is used and the
proper settings of thron, throff and the tracking time constant tt are necessary for the
suppressing of up/down pulses in the steady state.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment /decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off—on) in the DVC input signal.

The overall control function of the SCUV block is obvious from

217

the following diagram:

0
o NOT up
« - I < gan
—p—o 1 o e
4 - . T o] o
INJ Mn p| >
. 1
. A 4
OR
1; 0
AND cwol ¢
7'y 4
< 1
> — 0
FletHlledtle o,
=1 s trun
5 HS . -1
LS o~ 0
]
MUP
. OR pos
B MDN »(_3
o mdv_ MR T
Ve PWM‘ D

The complete structures of the three-state controllers are depicted in the following

Optional Connections

Process Value

vl
plup Y g I
HS — MDL
- Process
P DN Ls—
MVD
Motorized
Valve Drive

Optional Connections

Process Value

pup Y Plu v
Hs | MDL
I Process
P DN Ls—
MVD
Motorized
Valve Drive

figures:
Primary controller with integration: I, PIl, PID
Setpoint dv mviH
sp mv
pv dmv E dmv up
P! tv ub
hv de SAT
MAN J L plhs DN
IH SAT LS
MUP
Valve Drive (icoﬁng=4) MDN POS
MAN/AUT s RJud
T man MR
SCUV
(CWOI=0)
Primary controller without integration: P, PD
Setpoint v m\,]
sp :inr:v UpP
pv dmv ub
P SAT
hv de DN
MAN < S
IH SAT (Ivifs
~ PIDU MDN P©S
Manual Bias (icotype=4) mdv
DVC o
’—y MAN
Valve Drive
SCUV
MAN/AUT (CWOI=1)
Inputs
mv Manipulated variable (controller output)
dmv Controller velocity output (difference)

Double (F64)
Double (F64)

218 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

ub Bias (only for P or PD primary controller) Double (F64)
SAT Internal integrator reset (connected to the SAT output of the Bool
primary controller)
HS Upper end switch (detects the upper limit position of the valve) Bool
LS Lower end switch (detects the lower limit position of the valve) Bool
MUP Manual UP signal Bool
MDN Manual DN signal Bool
mdv Manual differential value (requested position Double (F64)
increment /decrement with higher priority than direct signals
MUP /MDN)
DVC Differential value change command (off—on) Bool
MAN Manual or automatic mode Bool
off ... Automatic mode on Manual mode
Outputs
UP The "up" signal Bool
DN The "down" signal Bool
pos Position output of motor simulator Double (F64)
MR Request to move the motor Bool
off ... Motor idle (UP = off and DN = off)
on Request to move (UP = on or DN = on)
Parameters
thron Switch-on value 10.0 ®0.02 Double (F64)
throff Switch-off value J0.0 ®0.01 Double (F64)
dtime Minimum width of the output pulse [s] 10.0 ®0.1 Double (F64)
btime Minimum delay between two subsequent output pulses [s] Double (F64)
10.0 ®0.1
RACT Reverse action flag Bool
off ... Higher mv — higher pv
on Higher mv — lower pv
trun Motor time constant (determines the time during which the Double (F64)
motor position changes by one unit) J0.0 ®10.0
CWoI Controller without integration flag Bool
off ... The primary controller has an integrator (I, PI, PID)
on The primary controller does not have an integrator
(P, PD)

tt Tracking time constant J0.0 ®1.0 Double (F64)

219

SELU — Controller selector unit

Block Symbol Licence: STANDARD

ul y
uz 1
y4 U2
swiY3
Sw2u4
SELU

Function Description

The SELU block is tailored for selecting the active controller in selector control. It chooses
one of the input signals ul, u2, u3, u4 and copies it to the output y. For BINF = off the
active signal is selected by the iSW input. In the case of BINF = on the selection is based
on the binary inputs SW1 and SW2 according to the following table:

iSW SWl SwW2 vy U1 U2 U3 U4
off off ul off on on on
off on w2 on off on on
on off u3 on on off on
on on u4 on on on off

w N = O

This table also explains the meaning of the binary outputs U1, U2, U3 and U4, which
are used by the inactive controllers in selector control for tracking purposes (via the SWU
blocks).

Inputs
ul..ud Signals to be selected from Double (F64)
isw Active signal selector in case of BINF = off Long (I32)
Swi Binary signal selector, used when BINF = on Bool
Sw2 Binary signal selector, used when BINF = on Bool
Outputs
y Analog output of the block Double (F64)
Ul..U4 Binary output signal for selector control Bool
Parameter
BINF Enable the binary selectors Bool

off ... Disabled (analog selector)
on Enabled (binary selectors)

220 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SMHCC — Sliding mode heating/cooling controller

Block Symbol Licence: ADVANCED
P mve
de
o S
t_ukp
W
t_pv
MAN | 'g56

SMHCC

Function Description

The sliding mode heating/cooling controller SMHCC is a novel high quality control al-
gorithm intended for temperature control of heating-cooling (possibly asymmetrical)
processes with ON-OFTF heaters and/or ON-OFF coolers. The plastic extruder is a typ-
ical example of such process. However, it can also be applied to many similar cases, for
example in thermal systems where a conventional thermostat is employed. To provide
the proper control function the block SMHCC must be combined with the block PWM (Pulse
Width Modulation) as depicted in the following figure.

v UP heater_contactor
| oN|—<"[cooler_contacior]]

- mve DN cooler_contactor]

[setpoint] sp de
SAT PWM
[process_temperature]— pv isv
t_ukp
t_ukm
[hand_value] hv t sk
t_pv
[MAN_AUT_switch MAN t_dpv
t d2pv
SMHCC

It is important to note that the block SMHCC works with two time periods. The first
period Tg is the sampling time of the process temperature, and this period is equal
to the period with which the block SMHCC itself is executed. The second period To =
tpwmels is the control period with which the block SMHCC generates manipulated variable.
This period T¢ is also equal to the cycle time of PWM block. At every instant when the
manipulated variable mv is changed by SMHCC the PWM algorithm recalculates the width
of the output pulse and starts a new PWM cycle. The time resolution T of the PWM
block is third time period involved with. This period is equal to the period with which
the block PWM is run and generally may be different from Ts. To achieve the high quality
of control it is recommended to choose T's as minimal as possible (Zpyme as maximal as
possible), the ratio T /Ts as maximal as possible but T should be sufficiently small
with respect to the process dynamics. An example of reasonable values for an extruder
temperature control is as follows:

Ts = 0.1, ipwme = 100, Te = 10s, T = 0.01s.

221

The control law of the block SMHCC in automatic mode (MAN = off) is based on the dis-
crete dynamic sliding mode control technique and special 3rd order filters for estimation
of the first and second derivatives of the control error.

The first control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sp 2 ép + 2601 + Q2ey,

is forced to zero. In the above definition of the sliding variable, eg, éx, €x denote the
filtered deviation error (pv—sp) and its first and second derivatives in the control period
k, respectively, and &, Q2 are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and wice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee s, = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s 2642606 + 0%

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order differential equation

s2 84206+ Q% =0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters &, 2. For stable behavior, it must hold £ > 0, > 0.
A typical optimal value of £ ranges in the interval [4, 8] and £ about 6 is often a satis-
factory value. The optimal value of €2 strongly depends on the controlled process. The
slower processes the lower optimal 2. The recommended value of € for start of tuning
is w/(51¢).

The manipulated variable mv usually ranges in the interval [—1,1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p
and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is significant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude uO_p (u0O_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set uO_p = hilim_p and uO_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of s alternately changes its value. In such a case the controller output isv alternates
the values 1 and —1. The rate of adaptation of the heating (cooling) amplitude is given
by the time constant taup (taum). Both of these time constants have to be sufficiently
high to provide the proper function of adaptation but the fine tuning is not necessary.

222 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sx <0.0) then mv=uk_p else mv=—uk_m

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary fine tuning is required then it may be tried to
find the better value for the bandwidth parameter beta of derivative filter, otherwise the
default value 0.1 is preferred. In the manual mode (MAN = on) the controller input hv is
(after limitation to the range [~hilim_m,hilim_p]) copied to the manipulated variable

mv.
Inputs
sp setpoint variable Double (F64)
pv process variable Double (F64)
hv manual value Double (F64)
MAN controller mode Bool
0 automatic mode 1 manual mode
Outputs
mv manipulated variable (position controller output) Double (F64)
mve equivalent manipulated variable Double (F64)
de deviation error Double (F64)
SAT saturation flag Bool
0 the controller implements a linear control law
1 ... the controller output is saturated, mv > hilim_p or
mv < -hilim_m
isv number of the positive (+) or negative (—) sliding variable steps Long (I32)
t_ukp current amplitude of heating Double (F64)
t_ukm current amplitude of cooling Double (F64)
t_sk discrete dynamic sliding variable sy, Double (F64)
t_pv filtered control error -de Double (F64)
t_dpv filtered first derivative of the control error t_ek Double (F64)
t_d2pv filtered second derivative of the control error t_ek Double (F64)
Parameters
ipwmc PWM cycle in the sampling periods of SMHCC (T¢/Ts) Long (I32)
xi relative damping ¢ of sliding zero dynamics xi > 0 Double (F64)
om natural frequency € of sliding zero dynamics 1(0.0) Double (F64)
taup time constant for adaptation of heating action amplitude in Double (F64)

seconds

taum

beta
hilim_p
hilim m
ul_p

uO_m

sp_dif
tauf

time constant for adaptation of cooling action amplitude in
seconds

bandwidth parameter of the derivative filter 40
high limit of the heating action amplitude J0.0 11.0
high limit of the cooling action amplitude J0.011.0

initial value of the heating action amplitude after setpoint change
and start of the block

initial value of the cooling action amplitude after setpoint change
and start of the block

Setpoint difference threshold ©10.0
Equivalent manipulated variable filter time constant ~ ©400.0

Double

Double
Double
Double
Double

Double

Double
Double

223

(F64)

(F64)
(F64)
(F64)
(F64)

(F64)

(F64)
(F64)

224 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

SMHCCA — Sliding mode heating/cooling controller with auto-
tuner

Block Symbol Licence: AUTOTUNING

sp mv
mve

pv de
SAT

t_ukm

MAN “tsk
t_pv
TMODEtt—dgz
TBSY
TUNE TE
ite

TBRK S;
p3

TAFF p4
p5

ips p6
SMHCCA

Function Description

The sliding mode heating/cooling controller (SMHCCA) is a novel high quality control
algorithm with a built-in autotuner for automatic tuning of the controller parameters.
The controller is mainly intended for temperature control of heating-cooling (possibly
asymmetrical) processes with ON-OFF heaters and/or ON-OFF coolers. The plastic
extruder heating/cooling system is a typical example of such process. However, it can also
be applied to many similar cases, for example, to thermal systems where a conventional
thermostat is normally employed. To provide the proper control function, the SMHCCA
block must be combined with the PWM block (Pulse Width Modulation) as depicted in
the following figure.

n up heater_contactor]
[setpoint] sp mv u

mve DN [cooler_contactor]

[process_temperature] pv de
SAT PWM

isv/
[hand_value] hv tukp
t_ukm
[MAN_AUT _switch] MAN t_sk
tpv
t_dpv
[tuning_mode] TMODE td2pv
TBSY
[start_of_tuning] TUNE TE
ite
[tuning_break] TBRK s;
p3
[affirmation_of_parameters] TAFF p4
p5
[selection_of parameter_set] ips P8

SMHCCA

It is important to note that the block SMHCCA works with two time periods. The first
period T is the sampling time of the process temperature, and this period is equal to the
period with which the block SMHCCA itself is executed. The other period Tc = ipwmels is
the control period with which the block SMHCCA generates the manipulated variable. This
period T¢ is equal to the cycle time of PWM block. At every instant when the manipulated
variable mv is changed by SMHCCA the PWM algorithm recalculates the width of the output

225

pulse and starts a new PWM cycle. The time resolution Tk of the PWM block is third
time period involved in. This period is equal to the period with which the block PWM is
executed and generally may be different from Tg. To achieve the high quality of control
it is recommended to choose Ts as minimal as possible (ipwme as maximal as possible),
the ratio T¢/Ts as maximal as possible but T should be sufficiently small with respect
to the process dynamics. An example of reasonable values for an extruder temperature
control is as follows:

Ts = 0.1, ipwme = 50, Tc = 5s, Tr = 0.1s.

Notice however that for a faster controlled system the sampling periods Ts, T¢ and
Tr must be shortened! More precisely, the three minimal time constant of the process
are important for selection of these time periods (all real thermal process has at least
three time constants). For example, the sampling period T's = 0.1 is sufficiently short for
such processes that have at least three time constants, the minimal of them is greater
than 10s and the maximal is greater than 100s. For the proper function of the controller
it is necessary that these time parameters are suitably chosen by the user according
to the actual dynamics of the process! If SMHCCA is implemented on a processor with
floating point arithmetic then the accurate setting of the sampling periods Ts, T, Tr
and the parameter beta is critical for correct function of the controller. Also, some other
parameters with the clear meaning described below have to be chosen manually. All the
remaining parameters (xi, om, taup, taum, tauf) can be set by the built-in autotuner
automatically. The autotuner uses the two methods for this purpose.

e The first one is dedicated to situations where the asymmetry of the process is
not enormous (approximately, it means that the gain ratio of heating/cooling or
cooling/heating is less than 5).

e The second method provides the tuning support for the strong asymmetric pro-
cesses and is not implemented yet (So far, this method has been developed and
tested in Simulink only).

Despite the fact that the first method of the tuning is based only on the heating
regime, the resulting parameters are usually satisfactory for both heating and cooling
regimes because of the strong robustness of sliding mode control. The tuning proce-
dure is very quick and can be accomplished during the normal rise time period of the
process temperature from cold state to the setpoint usually without any temporization
or degradation of control performance. Thus the tuning procedure can be included in
every start up from cold state to the working point specified by the sufficiently high
temperature setpoint. Now the implemented procedure will be described in detail. The
tuning procedure starts in the tuning mode or in the manual mode. If the tuning mode
(TMODE = on) is selected the manipulated variable mv is automatically set to zero and
the output TBSY is set to 1 for indication of the tuning stage of the controller. The cold
state of the process is preserved until the initialization pulse is applied to the input TUNE
(0 — 1). After some time (depending on beta), when the noise amplitude is estimated,

226 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

the heating is switched on with the amplitude given by the parameter ut_p. The process
temperature pv and its two derivatives (outputs t_pv, t_dpv, t_d2pv) are observed to
obtain the optimal parameters of the controller. If the tuning procedure ends without
errors, then TBSY is set to 0 and the controller begins to work in manual or automatic
mode according to the input MAN. If MAN = off and affirmation input TAFF is set to 1,
then the controller starts to work in automatic mode with the new parameter set pro-
vided by the tuner (if TAFF = off, then the new parameters are only displayed on the
outputs pl..p6). If some error occurs during the tuning, then the tuning procedure stops
immediately or stops after the condition pv>sp is fulfilled, the output TE is set to 1 and
ite indicate the type of error. Also in this case, the controller starts to work in the mode
determined by the input MAN. If MAN = off then works in automatic mode with the initial
parameters before tuning! The tuning errors are usually caused either by an inappropri-
ate setting of the parameter beta or by the too low value of sp. The suitable value of
beta ranges in the interval (0.001,0.1). If a drift and noise in pv are large the small beta
must be chosen especially for the tuning phase. The default value (beta=0.01) should
work well for extruder applications. The correct value gives properly filtered signal of
the second derivative of the process temperature t_d2pv. This well-filtered signal (cor-
responding to the low value of beta) is mainly necessary for proper tuning. For control,
the parameter beta may be sometimes slightly increased. The tuning procedure may be
also started from manual mode (MAN = off) with any constant value of the input hv.
However, the steady state must be provided in this case. Again, the tuning is started
by the initialization pulse at the input TUNE (0 — 1) and after the stop of tuning the
controller continues in the manual mode. In both cases the resulting parameters appear
on the outputs p1,...,p6.

TMODE

L/ N\ _
BUSY / \
/\/\;\

TUNE [77T T TN /N o ToTToTTmmmmmmmmmm

Automatic mode Tuning phase Automatic mode

pl- p6 / new parameters /

227

MAN=1
TUNE Y s (it eiieiee ittt
BUSY 4 \
ut_p
mv hv o/ \
Manual mode fl Tuning phase Manual mode
p1-p6 3 / new parameters /

The control law of the block SMHCCA in automatic mode (MAN = off) is based on
the discrete dynamic sliding mode control technique and special 3rd order filters for
estimation of the first and second derivatives of the control error.

The first control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sk 2 + 2606y + Oy,

is forced to zero. In the above definition of the sliding variable, eg, éx, €, denote the
filtered deviation error (pv—sp) and its first and second derivatives in the control period
k, respectively, and &, 2 are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and wice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sy = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s 2642606 + 0%

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order differential equation

s2 842006+ 0% =0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters &,€2. For stable behavior, it must hold & > 0,2 >
0. A typical optimal value of & ranges in the interval [4,8] and £ about 6 is often a
satisfactory value. The optimal value of € strongly depends on the controlled process.
The slower processes the lower optimal). The recommended value of 2 for start of
tuning is 7/(5T¢).

The manipulated variable mv usually ranges in the interval [—1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

228 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is significant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude uO_p (uO_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set uO_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of si alternately changes its value. In such a case the controller output isv alter-
nates the values 1 and —1. The rate of adaptation of the heating (cooling) amplitude is
given by time constant taup (taum). Both of these time constants have to be sufficiently
high to provide the proper function of adaptation but the fine tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sx <0.0) then mv=uk_p else mv=—uk_m

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary fine tuning is required then it may be tried
to find the better value for the bandwidth parameter beta of derivative filter, otherwise
the default value 0.1 is preferred.

In the manual mode (MAN = on) the controller input hv is (after limitation to the
range [—hilim_m, hilim_p]) copied to the manipulated variable mv. The controller output
mve provides the equivalent amplitude-modulated value of the manipulated variable mv
for informative purposes. The output mve is obtained by the first order filter with the
time constant tauf applied to mv.

Inputs
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool
0 Automatic mode 1 Manual mode
TMODE Tuning mode Bool
TUNE Start the tuning experiment: TUNE off—on Bool
TBRK Stop the tuning experiment: TBRK off—on Bool
TAFF Affirmation of the parameter set provided by the tuning Bool

procedure: TAFF = on

ips

Outputs

mv
mve
de

SAT

isv
t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE

Meaning of the output signals p1,...,p6

0 Controller parameters
pl ... recommended control period T¢
pP2... xi
p3... om
p4 ... taup
p5 ... taum
p6 ... tauf
1..... Auxiliary parameters
pl ... htp2 — time of the peak in the second
derivative of pv
p2 ... hpeak2 — peak value in the second derivative
of pv
p3 ... d2 — peak to peak amplitude of t_d2pv
p4 ... tgain

Manipulated variable (controller output)
Equivalent manipulated variable
Deviation error
Saturation flag
0 Signal not limited
1 Saturation limits active, mv > hilim_p or mv <
-hilim_m
Number of the positive (+) or negative (—) sliding variable steps
Current amplitude of heating
Current amplitude of cooling
Discrete dynamic sliding variable
Filtered process variable pv by 3rd order filter
Filtered first derivative of pv by 3rd order filter
Filtered second derivative of pv by 3rd order filter
Tuner busy flag (TBSY = on)
Tuning error
off ... Autotuning successful
on An error occured during the experiment

229

Long (I32)

Double
Double
Double
Bool

(F64)
(F64)
(F64)

Long (I32)

Double
Double
Double
Double
Double
Double
Bool

Bool

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

230 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

ite Error code Long (I32)
0 No error
1 ... Noise level in pv too high, check the temperature
input
2 ... Incorrect parameter ut_p
3 ... Setpoint sp too low
4 ... The two minimal process time constants are probably

too small with respect to the sampling period Ts OR
too high level of noise in the second derivative of pv
(try to decrease the beta parameter)

5 Premature termination of the tuning procedure
(TBRK)
pt Identified parameters with respect to ips, i =1,...,6 Double (F64)
Parameters
ipwmc PWM cycle (in sampling periods of the block, T¢/Ts) ©100 Long (I32)
xi Relative damping of sliding zero dynamics 10.518.0©1.0 Double (F64)
om Natural frequency w of sliding zero dynamics J0.000.01 Double (F64)
taup Time constant for adaptation of heating action amplitude [s] Double (F64)
®700.0
taum Time constant for adaptation of cooling action amplitude [s] Double (F64)
(©400.0
beta Bandwidth parameter of the derivative filter ©®0.01 Double (F64)

hilim_p Upper limit of the heating action amplitude 0.0 71.0 ®1.0 Double (F64)
hilim_m Upper limit of the cooling action amplitude 0.0 11.0 ®1.0 Double (F64)

uO_p Initial amplitude of the heating action ®1.0 Double (F64)
ul_m Initial amplitude of the cooling action ®1.0 Double (F64)
sp_dif Setpoint difference threshold for blocking of heating/cooling Double (F64)
amplitudes reset 10.0
tauf Time constant of the filter for obtaining the equivalent Double (F64)
manipulated variable (400.0
itm Tuning method ®1 Long (I32)
1..... Restricted to symmetrical processes
2 ... Asymmetrical processes (not implemented yet)
ut_p Amplitude of heating for tuning experiment 0.0 71.0 ®1.0 Double (F64)

ut_m Amplitude of cooling for tuning experiment |0.0 1.0 ®1.0 Double (F64)

231

SWU — Switch unit

Block Symbol Licence: STANDARD

Function Description

The SWU block is used to select the appropriate signal which should be tracked by the
inactive PIDU and MCU units in complex control structures. The input signal uc is copied
to the output y when all the binary inputs OR1, ..., OR4 are off, otherwise the output
y takes over the uo input signal.

Inputs
uc This input is copied to output y when all the binary inputs OR1, Double (F64)
OR2, OR3 and OR4 are off
uo This input is copied to output y when any of the binary inputs Double (F64)
OR1, OR2, OR3, OR4 is on
OR1 First logical output of the block Bool
OR2 Second logical output of the block Bool
OR3 Third logical output of the block Bool
OR4 Fourth logical output of the block Bool
Output

y Analog output of the block Double (F64)

232 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL

TSE — Three-state element

Block Symbol Licence: STANDARD
v ORb

TSE

Function Description

The TSE block transforms the analog input u to a three-state signal ("up", "idle" and
"down") according to the diagram below.

en _enoff
h epoff - ep u
Y A
> 1
DN
\/
Input
u Analog input of the block Double (F64)
Outputs
UP The "up" signal Bool
DN The "down" signal Bool
Parameters
ep The input value u > ep results in UP = on and DN = off 1.0 Double (F64)
en The input value u < en results in UP = off and DN = off Double (F64)
©-1.0
epoff UP switch off value; if UP = on and u < epoff then UP = off Double (F64)
©0.5
enoff DN switch off value; if DN = on and u > enoff then DN = off Double (F64)

®-0.5

Chapter 8

LOGIC — Logic control

Contents
AND_ — Logical product of twosignals v v v v v v v v v v 234
ANDQUAD, ANDQCT, ANDHEXD — Logical product of multiple signals . . 235
ATMT — Finite-state automaton 236
BDOCT, BDHEXD — Bitwise demultiplexers « « v v v v v v v v v 239
BITOP — Bitwise operation . « « « v v v v o ¢ ¢ ¢ s o o o o s o o s o o 240
BMOCT, BMHEXD — Bitwise multiplexers 241
COUNT — Controlled countero v i v oo 242
EATMT — Extended finite-state automaton 244
EDGE_ — Falling/rising edge detection in a binary signal 247
EQ — Equivalence of twosignals 248
INTSM — Integer number bit shift and mask 249
ISSW — Simple switch for integer signals 250
INTSM — Integer number bit shift and mask 251
ITOI — Transformation of integer and binary numbers 252
NOT_ — Boolean complementationt 253
OR_ — Logical sum of two signals« v v v v v v v v v v v v oo 254
ORQUAD, OROCT, ORHEXD — Logical sum of multiple signals 255
RS — Reset-set flip-flop circuit 256
SR — Set-reset flip-flop circuit ¢ v v v v v v v v v v e 257
TIMER_ — Multipurpose timer . « « « « v « ¢ ¢ ¢« 4 ¢ o o o s o o s o o 258

233

234 CHAPTER 8. LOGIC — LOGIC CONTROL

AND_ — Logical product of two signals

Block Symbol Licence: STANDARD

ut Yp
U2 NY p

AND_
Function Description

The AND_ block computes the logical product of two input signals Ul and U2.
If you need to work with more input signals, use the ANDOCT block.

Inputs
U1 First logical input of the block Bool
U2 Second logical input of the block Bool
Outputs
Y Output signal, logical product (U1 A U2) Bool

NY Boolean complementation of Y (NY = —Y) Bool

235

ANDQUAD, ANDOCT, ANDHEXD — Logical product of multiple signals

Block Symbols Licence: STANDARD

U1
U2
Us

s Y
Us
u7
us
02 Ut
us ¥ U1
U4 U12

U1 Us U1NY
U2 Y U6 U14
U3 U7 NY u15
U4 NY Us U6

ANDQUAD ANDOCT ANDHEXD
Function Description

The ANDQUAD, ANDOCT and ANDHEXD blocks compute the logical product of up to sixteen
input signals U1, U2, ..., U16. The signals listed in the nl parameter are negated prior
to computing the logical product.

For an empty nl parameter a simple logical product Y = UL AU2 AU3AULAUSAUG A
U7 A U8 is computed. For e.g. n1=1,3. .5, the logical function is Y = -U1 AU2 A U3 A
—U4 AU ATUBA...U16.

If you have less than 4/8/16 signals, use the nl parameter to handle the unconnected
inputs. If you have only two input signals, consider using the AND_ block.

Inputs

U1..U16 Logical inputs of the block Bool
Outputs

Y Result of the logical operation Bool

NY Boolean complementation of Y Bool
Parameter

nl List of signals to negate. The format of the list is e.g. 1,3..5,8. Long (I32)

Third-party programs (Simulink, OPC clients etc.) work with
an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case.

236 CHAPTER 8. LOGIC — LOGIC CONTROL

ATMT — Finite-state automaton

Block Symbol Licence: STANDARD

R1

Qo
ns0
seT &
AD 2
co
c1 «
&
&2 G
ca X
& as
&
& a0
& an
& a2
g9, ais
g1 Qu
g1 ars
c13 Kea

step
14 rout

Function Description

The ATMT block implements a finite state machine with at most 16 states and 16 transition
rules.

The current state of the machine ¢, ¢ = 0,1,...,15 is indicated by the binary outputs
QO, Q1, ..., Q15. If the state ¢ is active, the corresponding output is set to Qi=on. The
current state is also indicated by the ksa output (ksa € {0,1,...,15}).

The transition conditions Cy, k = 0,1,...,15 are activated by the binary inputs CO,
Cl, ..., C15. If Ck = on the k-th transition condition is fulfilled. The transition cannot
happen when Ck = off.

The automat function is defined by the following table of transitions:

S1 C1 FS1
S2 C2 FS2
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row
S1 C1 FS1
has the meaning

If (S1 is the current state AND transition condition C1 is fulfilled)
then proceed to the following state F'S1.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state SO. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The

237

R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the C¢ input signals and the tstep
timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits T'Os for individual states are defined
by the touts array. There is no time limit for the given state when T'O1 is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN
Studio by clicking the Configure button in the parameter dialog of the ATMT block.

Inputs
R1 Reset signal, R1 = on brings the automat to the initial state SO; Bool
the R1 input overpowers the SET input
ns0 This state is reached when rising edge occurs at the the SET input Long (I32)
SET The rising edge of this signal forces the transition to the nsO Bool
state
HLD The HLD = on freezes the automat, no transitions occur Bool

regardless of the input signals, tstep is not increasing

CO...C15 The transition conditions; Ci = on means that the i-th condition Bool
was fulfilled and the corresponding transition rule can be
executed

Outputs

Q0...Q15 Output signals indicating the current state of the automat; the Bool
current state ¢ is indicated by Qi = on

ksa Integer code of the active state Long (I32)
tstep Time elapsed since the current state was reached; the timer is Double (F64)
set to 0 whenever a state transition occurs
TOUT Flag indicating that the time limit for the current state was Bool
exceeded
Parameters
morestps Allow multiple transitions in one cycle of the automat Bool
off ... Disabled
on Enabled
ntr Number of state transition table rows J0 164 ®4 Long (I32)
sfcname Filename of block configurator data file (filename is generated String

by system if parameter is empty)

238 CHAPTER 8. LOGIC — LOGIC CONTROL

STT State transition table (matrix) Byte (U8)
®[001; 112;223; 330]
touts Vector of timeouts 700, TO1, ..., TO15 for the states SO, S1, Double (F64)

..., 515 ©®[1 23456789 10 11 12 13 14 15 16]

239

BDOCT, BDHEXD — Bitwise demultiplexers

Block Symbols Licence: STANDARD

YO

Y1

Y2

Y3

Y4

Y5

¥§

Y0 U vg
Y1 Y9
Y2 Y10
Y3 Y11

U vq Y12
Y5 Y13
Y6 Y14
Y7 Y15
BDOCT BDHEXD

Function Description

Both BDOCT and BDHEXD are bitwise demultiplexers for easy decomposition of the input
signal to individual bits. The only difference is the number of outputs, the BDOCT block
has 8 Boolean outputs while the BDHEXD block offers 16-bit decomposition. The output
signals Yi correspond with the individual bits of the input signal iu, the YO output is the
least significant bit.

Input

iu Input signal to be decomposed Long (I32)
Outputs

Y0...Y15 Individual bits of the input signal Bool
Parameter

shift Bit shift of the input signal J0 131 Long (I32)

240 CHAPTER 8. LOGIC — LOGIC CONTROL

BITOP — Bitwise operation

Block Symbol Licence: STANDARD

Function Description

The BITOP block performs bitwise operation il o i2 on the signals i1 and i2, resulting
in an integer output n. The type of operation is selected by the iop parameter described
below. In case of logical negation or 2’s complements the input i2 is ignored (i.e. the
operation is unary).

Inputs
i1 First integer input of the block Long (I32)
i2 Second integer input of the block Long (I32)
Output
n Result of the bitwise operation iop Long (I32)
Parameter
iop Bitwise operation ®1 Long (I32)
1 ... Bitwise negation (Bit NOT)
2 ... Bitwise logical sum (Bit OR)
3 ... Bitwise logical product (Bit AND)
4 ... Bitwise logical exclusive sum (Bit XOR)
5 Shift of the i1 signal by i2 bits to the left (Shift
Left)
6 Shift of the i1 signal by i2 bits to the right (Shift
Right)
7T ... 2’s complement of the il signal on 8 bits (2’s
Complement - Byte)
8 2’s complement of the il signal on 16 bits (2’s
Complement - Word)
9 ... 2’s complement of the il signal on 32 bits (2’s

Complement - Long)

241

BMOCT, BMHEXD — Bitwise multiplexers

Block Symbols Licence: STANDARD

uo

U1

U2

u3

U4

Us

:
uo ug VY
U1 U9
U2 u10
us . u11
us Y u12
us u13
U6 u14
u7 uis
BMOCT BMHEXD

Function Description

Both BMOCT and BMHEXD are bitwise multiplexers for easy composition of the output
signal from individual bits. The only difference is the number of inputs, the BMOCT block
has 8 Boolean inputs while the BMHEXD block offers 16-bit composition. The input signals
U: correspond with the individual bits of the output signal iy, the UO input is the least
significant bit.

Inputs

U0...U15 Individual bits of the output signal Bool
Output

iy Composed output signal Long (I32)
Parameter

shift Bit shift of the output signal J0 131 Long (I32)

242 CHAPTER 8. LOGIC — LOGIC CONTROL

COUNT — Controlled counter

Block Symbol Licence: STANDARD

R1 cnt

n0
SETHSGN

Function Description

The COUNT block is designed for bidirectional pulse counting — more precisely, counting
rising edges of the UP and DN input signals. When a rising edge occurs at the UP (DN)
input, the cnt output is incremented (decremented) by 1. Simultaneous occurrence of
rising edges at both inputs is indicated by the error output E set to on. The R1 input
resets the counter to 0 and no addition or subtraction is performed unless the R1 input
returns to of f again. It is also possible to set the output cnt to the value n0 by the SETH
input. Again, no addition or subtraction is performed unless the SETH input returns to of £
again. The R1 input has higher priority than the SETH input. The input HLD = on prevents
both incrementing and decrementing. When the counter reaches the value cnt > nmax,
the Q output is set to on.

Inputs
R1 Block reset (R1 = on) Bool
no Value to set the counter to (using the SETH input) Long (I32)
SETH Set the counter value to n0 (SETH = on) Bool
UP Incrementing input signal Bool
DN Decrementing input signal Bool
HLD Counter freeze Bool
off ... Counter is running
on Counter is locked
nmax Counter target value Long (I32)
Outputs
cnt Total number of pulses Long (I32)
SGN Sign of the cnt output Bool
off ... for cnt <0
on forcnt >0
qQ Target value indicator Bool
off ... for cnt < nmax

on for cnt > nmax

243

Indicator of simultaneous occurrence of rising edges at both Bool
inputs UP and DN

244 CHAPTER 8. LOGIC — LOGIC CONTROL

EATMT — Extended finite-state automaton

Block Symbol Licence: ADVANCED

Function Description

The EATMT block implements a finite automat with at most 256 states and 256 transition
rules, thus it extends the possibilities of the ATMT block.

The current state of the automat i, ¢ = 0,1,...,255 is indicated by individual bits
of the integer outputs q0, q1, ..., q15. Only a single bit with index ¢ MOD 16 of the
q(i DIV 16) output is set to 1. The remaining bits of that output and the other outputs
are zero. The bits are numbered from zero, least significant bit first. Note that the
DIV and MOD operators denote integer division and remainder after integer division
respectively. The current state is also indicated by the ksa € {0, 1,...,255} output.

The transition conditions Ck, k = 0,1, ...,255) are activated by individual bits of the
inputs ¢c0, c1, ..., ¢15. The k-th transition condition is fulfilled when the (K MOD 16)-th
bit of the input ¢(k DIV 16) is equal to 1. The transition cannot happen otherwise.

The BMHEXD or BMOCT bitwise multiplexers can be used for composition of the input

signals ¢0, c1, ..., ¢15 from individual Boolean signals. Similarly the output signals qO,
ql, ..., q15 can be decomposed using the BDHEXD or BDOCT bitwise demultiplexers.
The automat function is defined by the following table of transitions:
S1 C1 FS1
S2 C2 FS2
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row
S1 C1 FS1
has the meaning

If (S1 is the current state AND transition condition C1 is fulfilled)
then proceed to the following state F'S1.

245

The above described meaning of the table row holds for C1 < 1000. Negation of the
(C1 — 1000)-th transition condition is assumed for C'1 > 1000.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the c¢ input signals and the tstep
timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits T'Os for individual states are defined
by the touts array. There is no time limit for the given state when T'Oi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN
Studio by clicking the Configure button in the parameter dialog of the EATMT block.

Inputs
R1 Reset signal, R1 = on brings the automat to the initial state SO; Bool
the R1 input overpowers the SET input
ns0 This state is reached when rising edge occurs at the the SET input Long (I32)
SET The rising edge of this signal forces the transition to the nsO Bool
state
HLD The HLD = on freezes the automat, no transitions occur Bool

regardless of the input signals, tstep is not increasing

c0...c15 Transition conditions, each input signal contains 16 transition
conditions, see details above

Outputs

q0...915 Output signals indicating the current state of the automat, see Long (I32)
details above

ksa Integer code of the active state Long (I32)

tstep Time elapsed since the current state was reached; the timer is Double (F64)
set to O whenever a state transition occurs

TOUT Flag indicating that the time limit for the current state was Bool
exceeded

246 CHAPTER 8. LOGIC — LOGIC CONTROL

Parameters

morestps Allow multiple transitions in one cycle of the automat
off ... Disabled

on Enabled
ntr Number of state transition table rows J0 11024 04
sfcname Filename of block configurator data file (filename is generated
by system if parameter is empty)
STT State transition table (matrix)
®[001; 112;223; 330]
touts Vector of timeouts T0O, TO1, ..., T0255 for the states S0, S1,

.., 5255 ©®©[1 23456789 10 11 12 13 14 15 16]

Bool

Long (I32)
String
Short (I16)

Double (F64)

247

EDGE_ — Falling/rising edge detection in a binary signal

Block Symbol Licence: STANDARD

EDGE_

Function Description

The EDGE_ block detects rising (off—on) and/or falling (on—off) edges in the binary
input signal U. The type of edges to detect is determined by the iedge parameter. As
long as the input signal remains constant, the output Y is off. In the case when an edge
corresponding with the iedge parameter is detected, the output Y is set to on for one
sampling period.

Input
U Logical input of the block Bool
Output
Y Logical output of the block Bool
Parameter
iedge Type of edges to detect ®1 Long (I32)
1..... Rising edge
2 ... Falling edge

3 ... Both edges

248 CHAPTER 8. LOGIC — LOGIC CONTROL

EQ — Equivalence of two signals

Block Symbol Licence: STANDARD
i

EQ

Function Description

The block compares two input signals and Y=on is set if both signals have the same value.
Both signals must be either of a numeric type or strings. A conversion between numeric
types is performed: for example 2.0 (double) and 2 (long) are evaluated as equivalent.
Comparison of matrices or other complex types is not supported.

Inputs
ul Block input signal Unknown
u?2 Block input signal Unknown
Output

Y Output signal Bool

249

INTSM — Integer number bit shift and mask

Block Symbol Licence: STANDARD

INTSM

Function Description

The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is filled with
7Er0s.
Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a
given position in integer register which was read from some external system.

Input
i Integer value to shift and mask |-9.22337E+18 19.22337E+18 Large (I64)
Parameters
shift Bit shift (negative=left, positive=right) }-63 163 Long (I32)
mask Bit mask (applied after bit shift) Large (I64)
J0 14294970000 ©4294967295
Output

n Resulting integer value Large (I64)

250 CHAPTER 8. LOGIC — LOGIC CONTROL

ISSW — Simple switch for integer signals

Block Symbol Licence: STANDARD

Function Description

The ISSW block is a simple switch for integer input signals i1 and 12 whose decision
variable is the binary input SW. If SW is off, then the output n is equal to the i1 signal.
If SW is on, then the output n is equal to the 12 signal.

Inputs
i1 First integer input of the block Long (I32)
i2 Second integer input of the block Long (I32)
Sw Signal selector Bool
off ... The il signal is selected
on The i2 signal is selected
Output

n Integer output of the block Long (I32)

251

INTSM — Integer number bit shift and mask

Block Symbol Licence: STANDARD

INTSM

Function Description

The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is filled with
7Er0s.
Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a
given position in integer register which was read from some external system.

Input
i Integer value to shift and mask |-9.22337E+18 19.22337E+18 Large (I64)
Parameters
shift Bit shift (negative=left, positive=right) }-63 163 Long (I32)
mask Bit mask (applied after bit shift) Large (I64)
J0 14294970000 ©4294967295
Output

n Resulting integer value Large (I64)

252 CHAPTER 8. LOGIC — LOGIC CONTROL

ITOI — Transformation of integer and binary numbers

Block Symbol Licence: STANDARD

Function Description

The ITOI block transforms the input number k, or the binary number (U3 U2 U1 U0)o,
from the set {0,1,2,...,15} to the output number nk and its binary representation
(Y3 Y2 Y1 YO0)2 from the same set. The transformation is described by the following table

k|[o 1 2 ... 15
nk [n0 nl n2 ... ni5
where n0, ..., nl5 are given by the mapping table target vector fktab.

If BINF = off, then the integer input k is active, while for BINF = on the input is
defined by the binary inputs (U3 U2 U1 UOQ)s.

Inputs
k Integer input of the block Long (I32)
Uo Binary input digit, weight of 1 Bool
U1 Binary input digit, weight of 2 Bool
U2 Binary input digit, weight of 4 Bool
U3 Binary input digit, weight of 8 Bool
Outputs
nk Integer output of the block Long (I32)
YO Binary output digit, weight of 1 Bool
Y1 Binary output digit, weight of 2 Bool
Y2 Binary output digit, weight of 4 Bool
Y3 Binary output digit, weight of 8 Bool
Parameters
BINF Enable the binary selectors ®on Bool
off ... Disabled (integer input k)
on Enabled (binary input signals U3...U0)
fktab Vector of mapping table target values Byte (U8)

®[0 123456789 10 11 12 13 14 15]

NOT_ — Boolean complementation

Block Symbol

U}

NOT_
Function Description

The NOT block negates the input signal.
Input

U Logical input of the block

Output

Y Logical output of the block (Y = —U)

253

Licence: STANDARD

Bool

Bool

254 CHAPTER 8. LOGIC — LOGIC CONTROL

OR_ — Logical sum of two signals

Block Symbol Licence: STANDARD

ut Yp
U2 NY p

OR_

Function Description

The OR block computes the logical sum of two input signals U1 and U2.
If you need to work with more input signals, use the OROCT block.

Inputs
U1 First logical input of the block Bool
U2 Second logical input of the block Bool
Outputs
Y Logical output of the block (U1 V U2) Bool

NY Boolean complementation of Y (NY = —Y) Bool

255

ORQUAD, OROCT, ORHEXD — Logical sum of multiple signals

Block Symbols Licence: STANDARD
u1
u2
i
us Y
ue
u7
us
U1 U9
u2 v u10
u3 u11
U4 u12
u1 v us U1INY
NgE v
O NY U8 U16
ORQUAD OROCT ORHEXD

Function Description

The ORQUAD, OROCT and ORHEXD blocks compute the logical sum of up to sixteen input
signals U1, U2, ..., U16. The signals listed in the nl parameter are negated prior to
computing the logical sum.

For an empty nl parameter a simple logical sum Y =U1V U2V U3V U4V U5VUEYV
U7 V...V U16 is computed. For e.g. n1=1,3. .5, the logical function is Y = -U1 VU2 V
—U3V U4V -U5VU6V...VUL6.

If you have only two input signals, consider using the 0R_ block.

Inputs

Ul..U16 Logical inputs of the block Bool
Outputs

Y Result of the logical operation Bool

NY Boolean complementation of Y Bool
Parameter

nl List of signals to negate. The format of the list is e.g. 1,3..5,8. Long (I32)

Third-party programs (Simulink, OPC clients etc.) work with
an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case.

256 CHAPTER 8. LOGIC — LOGIC CONTROL

RS — Reset-set flip-flop circuit

Block Symbol Licence: STANDARD

S Qp
R1NQp

RS

Function Description

The RS block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S is equal to on. The other input signal R1 resets the Q output to off
even if the S input is on. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

Inputs
S Flip-flop set, sets the Q output to on Bool
R1 Priority flip-flop reset, sets the Q output to off, overpowers the Bool
S input
Outputs
Q Flip-flop circuit state Bool

NQ Boolean complementation of Q Bool

257

SR — Set-reset flip-flop circuit

Block Symbol Licence: STANDARD

S1 Qp
R NQp

SR

Function Description

The SR block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S1 is on. The other input signal R resets the Q output to off, but only
if the S1 input is off. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

Inputs
S1 Priority flip-flop set, sets the Q output to on, overpowers the R Bool
input
R Flip-flop reset, sets the Q output to off Bool
Outputs
Q Flip-flop circuit state Bool

NQ Boolean complementation of Q Bool

258 CHAPTER 8. LOGIC — LOGIC CONTROL

TIMER_ — Multipurpose timer

Block Symbol Licence: STANDARD

U Q
HLD et
R1 rt

TIMER_

Function Description

The TIMER_ block either generates an output pulse of the given width pt (in seconds)
or filters narrow pulses in the U input signal whose width is less than pt seconds. The
operation mode is determined by the mode parameter.

The graph illustrates the behaviour of the block in individual modes for pt = 3:

mode 2

mode 3

/ L

1 1 1 1 1 1 1 1 1 1
0 2 3 4 5 7 9 10 11 13 14 15
time [s]

The timer can be paused by the HLD input. The R1 input resets the timer. The reset
signal overpowers the U input.

Inputs

U Trigger of the timer Bool

HLD Timer hold Bool

R1 Block reset (R1 = on) Bool
Outputs

qQ Timer output Bool

et Elapsed time [s] Double (F64)

rt Remaining time [s] Double (F64)

Parameters

mode

pt

Timer mode o1

Pulse — an output pulse of the length pt is generated
upon rising edge at the U input. All input pulses
during the generation of the output pulse are ignored.
Delayed ON — the input signal U is copied to the Q
output, but the start of the pulse is delayed by pt
seconds. Any pulse shorter than pt is does not pass
through the block.

Delayed OFF — the input signal U is copied to the
Q output, but the end of the pulse is delayed by pt
seconds. If the break between two pulses is shorter
than pt, the output remains on for the whole time.

Delayed change — the Q output is set to the value
of the U input no sooner than the input remains
unchanged for pt seconds

Timer interval [s] ®1.0

259

Long (I32)

Double (F64)

260 CHAPTER 8. LOGIC — LOGIC CONTROL

Chapter 9

TIME — Blocks for handling time

Contents
DATE_. —Current datettt eeeennnes 262
DATETIME — Get, set and convert time 263
TIME — Current time i i v v v v i i e e e e e 265
WSCH — Weekly schedulettt v vt 266

261

262 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

DATE_ — Current date

Block Symbol Licence: STANDARD

year
month
day
dow

DATE_

Function Description

The outputs of the DATE_ function block correspond with the actual date of the operating
system. Use the DATETIME block for advanced operations with date and time.

Outputs

year Year Long (I32)
month Month Long (I32)
day Day Long (I32)
dow Day of week, first day of week is Sunday (1) Long (I32)
Parameter
tz Timezone ®1 Long (I32)
1 ... Local time

2 ... UTC

263

DATETIME — Get, set and convert time

Block Symbol Licence: STANDARD
uyear yye?hr
umonth ym;(;]ay
uday yhour

uhour
umin ynsec

ydow

usec ywoy
unsec tday
tsec

SET tnsec
GET dsec

DATETIME

Function Description

The DATETIME block is intended for advanced date/time operations in the REXYGEN
system.

It allows synchronization of the operating system clock and the clock of the REXYGEN
system. When the executive of the REXYGEN gystem is initialized, both clocks are the
same. But during long-term operation the clocks may loose synchronization (e.g. due to
daylight saving time). If re-synchronization is required, the rising edge (off—on) at the
SET input adjusts the clock of the REXYGEN system according to the block inputs and
parameters.

It is highly recommended not to adjust the REXYGEN system time when the con-
trolled machine/process is in operation. Unexpected behavior might occur.

If date/time reading or conversion is required, the rising edge (off—on) at the GET
input triggers the action and the block outputs are updated. The outputs starting with
't” denote the total number of respective units since January 1st, 2000 UTC.

Both reading and adjusting clock can be repeated periodically if set by getper and
setper parameters.

If the difference of the two clocks is below the tolerance limit settol, the clock of
the REXYGEN system is not adjusted at once, a gradual synchronization is used instead.
In such a case, the timing of the REXYGEN system executive is negligibly altered and
the clocks synchronization is achieved after some time. Afterwards the timing of the
REXYGEN executive is reverted back to normal.

For simple date/time reading use the DATE_ and TIME function blocks.

Inputs
uyear Input for setting year ©®0.00E+00 Long (I32)
umonth Input for setting month ©0.00E+00 Long (I32)
uday Input for setting day ©®0.00E+00 Long (I32)
uhour Input for setting hours ©0.00E+00 Long (I32)

umin Input for setting minutes (®0.00E+00 Long (I32)

264 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

©0.00E+00

1-9.22E+18 19.22E+18 (50.00E+00

usec Input for setting seconds
unsec Input for setting nanoseconds
SET Trigger for setting time
GET Trigger for getting time
Outputs
yyear Year
ymonth Month
yday Day
yhour Hours
ymin Minutes
ysec Seconds
ynsec Nanoseconds
ydow Day of week
ywoy Week of year
tday Total number of days
tsec Total number of seconds
tnsec Total number of nanoseconds
dsec Number of seconds since midnight
Parameters
isetmode Source for setting time
1 ... OS clock
2 ... Block inputs
3 ... The unsec input
4 The usec input
5 The unsec input, relative
igetmode Source for getting or converting time
1 ... OS clock
2 ... Block inputs
3 ... The unsec input
4 The usec input
5 The uday input
6 REXYGEN clock
settol Tolerance for setting the REXYGEN clock [s]
setper Period for setting time [s] (0=not periodic)
getper Period for getting time [s] (0=not periodic)
FDOW First day of week is Sunday
off ... Week starts on Monday
on Week starts on Sunday
tz Timezone
1 ... Local time

2 ... UTC

©®1.00E+00

©6.00E+00

©1.0
0.0
0.001

©®1.00E+00

Long (I32)
Large (I64)

Bool
Bool

Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Large (I64)
Long (I32)

Long (I32)

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

Long (I32)

265

TIME — Current time

Block Symbol Licence: STANDARD

hour
min

sec
TIME

Function Description

The outputs of the TIME function block correspond with the actual time of the operating
system. Use the DATETIVME block for advanced operations with date and time.

Outputs

hour Hours Long (I32)
min Minutes Long (I32)
sec Seconds Long (I32)
Parameter

tz Timezone ®1 Long (I32)

1 ... Local time
2 ..., UTC

266 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

WSCH — Weekly schedule

Block Symbol Licence: STANDARD

SET iy

4
val isch
trem
fsch ynext

WSCH

Function Description

The WSCH function block is a weekly scheduler for e.g. heating (day, night, eco), ventilation
(high, low, off), lighting, irrigation etc. Its outputs can be used for switching individual
appliances on/off or adjusting the intensity or power of the connected devices.

During regular weekly schedule the outputs iy and y reflect the values from the wst
table. This table contains triplets day-hour-value. E.g. the notation [2 6.5 21.5] states
that on Tuesday, at 6:30 in the morning (24-hour format), the output y will be set to 21.5.
The output iy will be set to 22 (rounding to nearest integer). The individual triplets are
separated by semicolons.

The days in a week are numbered from 1 (Monday) to 7 (Sunday). Higher values
can be used for special daily schedules, which can be forced using the fsch input or the
specdays table. The active daily program is indicated by the isch output.

Alternatively it is possible to temporarily force a specific output value using the val
input and a rising edge at the SET input (off—on). When a rising edge occurs at the
SET input, the val input is copied to the y output and the isch output is set to 0. The
forced value remains set until:

e the next interval as defined by the wst table, or
e another rising edge occurs at the SET input, or
e 3 different daily schedule is forced using the fsch input.

The list of special days (specdays) can be used for forcing a special daily schedule
at given dates. E.g. you can force a Sunday daily schedule on holidays, Christmas, New
Year, etc. The date is entered in the YYYYMMDD format. The notation [20160328 7] thus
means that on March 28th, 2016, the Sunday daily schedule should be used. Individual
pairs are separated by semicolons.

The trem and ynext outputs can be used for triggering specific actions in advance,
before the y and iy are changed.

The iy output is meant for direct connection to function blocks with Boolean inputs
(the conversion from type long to type bool is done automatically).

The nmax parameter defines memory allocation for the wst and specdays arrays.
For nmax = 100 the wst list can contain up to 100 triplets day-hour-value. In typical
applications there is no need to modify the nmax parameter.

267

Inputs
SET Trigger for setting the y and iy outputs Bool
val Temporary value to set the y and iy outputs to Double (F64)
fsch Forced schedule Long (I32)
0 standard weekly schedule
1..... Monday
2 ..., Tuesday
7T ... Sunday
8 and above additional daily programs as defined by the
wst table
Outputs
iy Integer output value Long (I32)
y Output value Double (F64)
isch Daily schedule identifier Long (I32)
trem Time remaining in the current section (in seconds) Double (F64)
ynext Output in the next section Double (F64)
Parameters
tz Timezone ©®1.00E+00 Long (I32)
1 ... Local time
2 ... UTC
nmax Allocated size of arrays J10 11000000 ®1.00E+02 Long (I32)
wst Weekly schedule table (list of triplets day-hour-value) Double (F64)
®[1 0.01 18.0; 2 6.0 22.0; 2 18.0 18.0; 3 6.0 22.0; 3 18.0 18.0; 4 6.0 22.0; 4 18.0 18.0
specdays List of special days (list of pairs date-daily program) Long (I32)

©[20150406 1; 20151224 1; 20151225 1; 20151226 1; 20160101 1; 20160328 1; 20170417 1; 20

268 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

Chapter 10

ARC — Data archiving

Contents
10.1 Functionality of the archiving subsystem 270
10.2 Generating alarms and events0 0oL, 271
ALB, ALBI — Alarms for Boolean value. 271
ALN, ALNI — Alarms for numerical value 273
ARS — Archivestore value v i 276
10.3 Trends recording « « v v v v ¢ v ¢ v v o 0 o o o o s o o o o s o o s oo 278
ACD — Archive compression using Delta criterion 278
TRND — Real-time trend recording 280
TRNDV — Real-time trend recording with vector input 283
10.4 Archive managementt 284
AFLUSH — Forced archive flushing v v v v v v v v v v v 284

The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.). One of
these subsystems is the archiving subsystem.

The archiving subsystem takes care of recording the history of the control algorithm.
The first chapter describes the functionality of the archiving subsystem while the subse-
quent chapters describe the function blocks of the REXYGEN system.

The function blocks can be divided into groups by their use:

e Blocks for generating alarms and events
e Blocks for recording trends
e Blocks for handling archives

269

270 CHAPTER 10. ARC — DATA ARCHIVING

10.1 Functionality of the archiving subsystem

The archive in the REXYGEN system stores the history of events, alarms and trends
of selected signals. There can be up to 15 archives in each target device. The types or
archives are listed below:

RAM memory archive — Suitable for short-term data storage. The data access rate
is very high but the data is lost on reboot.

Archive in a backed-up memory — Similar to the RAM archive but the data is not
lost on restart. Data can be accessed fast but the capacity is usually quite limited
(depends on the target platform).

Disk archive The disk archives are files in a proprietary binary format. The files are
easily transferrable among individual platforms and the main advantage is the size,
which is limited only by the capacity of the storage medium. On the other hand,
the drawback is the relatively slow data access.

Not all hardware platforms support all types of archives. The individual types which are
supported by the platform can be displayed in the REXYGEN Diagnostics program or in
REXYGEN Studio in the Diagnostics tree view panel after clicking on the name of the
target device (IP address). The supported types are listed in the lower left part of the
Target tab.

10.2. GENERATING ALARMS AND EVENTS 271

10.2 Generating alarms and events

ALB, ALBI — Alarms for Boolean value

Block Symbols Licence: STANDARD
T ir:ZnK NACK

Function Description

The ALB and ALBI blocks generate alarms or events when a Boolean input signal U
changes. The men parameter selects whether the rising or falling or both edges in the
input signal should be indicated. The iac output shows the current alarm (event) code.

The ALBI block is an extension of the ALB block as the alarms (events) are indicated
also by Boolean output signals HA, LA and NACK. The type of edges to watch is selected by
the men input signal and the alarms are acknowledged by the iACK input signal instead
of parameters with the same name and meaning.

The events and alarms are differentiated by the 1vl parameter in the REXYGEN sys-
tem. The range 1 < 1vl < 127 is reserved for alarms. All starts, ends and acknowledge-
ments of the alarms are stored in the archive. On the contrary, the range 128 < 1vl < 255
indicates events. Only the start (the time instant) of the event is stored in the archive.

Inputs
U Logical input of the block whose changes are watched Bool
men Enable alarms Long (I32)
0 All alarms disabled
1 ..., Low-alarm enabled (LA) (falling edge in the input
signal U)
2 ... High-alarm enabled (HA)(rising edge in the input
signal U)
K All alarms enabled
iACK Acknowledge alarm Byte (U8)
1 ..., Low-alarm acknowledge
2 ... High-alarm acknowledge
3 ... Both alarms acknowledge

Alarm is acknowledged on rising edge

272 CHAPTER 10. ARC — DATA ARCHIVING

Outputs
iac Current alarm code Long (I32)
0 All alarms inactive
1..... Low-alarm active (LA)
2 ... High-alarm active (HA)
256 ... Low-alarm not acknowledged (NACK)
512 ... High-alarm not acknowledged (NACK)
HA High-alarm indicator Bool
LA Low-alarm indicator Bool
NACK Alarm-not-acknowledged indicator Bool
Parameters
arc List of archives to store the events. The format of the list is Word (U16)

e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.
id Identification code of the alarm in the archive. This identifier Word (U16)

must be unique in the whole target device with the REXYGEN
control system (i.e. in all archiving blocks). Disabled for id = 0.

®1
1vl The level of the alarms (HA and LA) which differentiates alarms Byte (U8)
from events and defines the severity of the alarm/event |1 ®1
Desc Extended description of the alarm which is displayed by the String

diagnostic tools of the REXYGEN system
©Alarm Description

10.2. GENERATING ALARMS AND EVENTS 273

ALN, ALNI — Alarms for numerical value

Block Symbols Licence: STANDARD
b E
hh HHA
h HA
| LA
Ju_iach ACK NACK
ALN ALNI

Function Description

The ALN and ALNI blocks generate two-level alarms or events when a limit value is
exceeded (or not reached). There are four limit values the input signal u is compared to,
namely high-limits h and hh and low-limits 1 and 11. The iac output shows the current
alarm (event) code.

The ALNT block is an extension of the ALN block as the alarms (events) are indicated
also by Boolean output signals HHA, HA, LA and LLA and the variables of the alarm
algorithm are given by the input signals hys, hh, h, 1 and 11 instead of parameters with
the same name and meaning.

The events and alarms are differentiated by the 1v1 parameter in the REXYGEN sys-
tem. The range 1 < 1vl < 127 is reserved for alarms. All starts, ends and acknowledge-
ments of the alarms are stored in the archive. On the contrary, the range 128 < 1v1 < 255
indicates events. Only the start (the time instant) of the event is stored in the archive.

Inputs
u Analog input of the block which is checked to remain within the Double (F64)
given limits
hys Alarm hysteresis for switching the alarm off J1e-10 T1e+10 Double (F64)
hh The second high-alarm limit, must be greater than h Double (F64)
h High-alarm limit, must be greater than 1 Double (F64)
1 Low-alarm limit, must be greater than 11 Double (F64)
11 The second low-alarm limit Double (F64)
iACK Alarm is acknowledged on rising edge of the individual bits of
this input/parameter. E.g. value 15 acknowledges all alarms.
Byte (U8)
1 ..., Second low-alarm acknowledge
2 ... Low-alarm acknowledge
4 High-alarm acknowledge
8 Second high-alarm acknowledge

In case a one-level alarm is required, it is sufficient to set 1v12=0 or set the hh and 11
limits to extreme values which can never be reached by the input signal.

274 CHAPTER 10. ARC — DATA ARCHIVING

Outputs
iac Current alarm code. Additional bitwise combinations of the codes Long (I32)
may appear. E.g. 12 means both high alarms.
0 Signal within limits
1 ... Low-alarm active
p High-alarm active
4 Second low-alarm active
8 Second high-alarm active
256 ... Low-alarm not acknowledged
512 ... High-alarm not acknowledged
1024 .. Second low-alarm not acknowledged
2048 .. Second high-alarm not acknowledged
-1 Invalid alarm limits
E Error flag Bool
off ... No error
on An error occurred, alarm limits disordered
HHA The second high-alarm indicator Bool
HA High-alarm indicator Bool
LA Low-alarm indicator Bool
LLA The second low-alarm indicator Bool
NACK Alarm-not-acknowledged indicator Bool
Parameters
acls Alarm class (data type to store) ®8 Byte (U8)
1 ..., Bool 5 Word (U16)
2 ... Byte (U8% DWord (W82)... Large (I64)
3 ... Short (I18) Float (F32)
4 ... Long (133 Double (F64)
arc List of archives to store the events. The format of the list is Word (U16)

e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.
id Identification code of the alarm in the archive. This identifier Word (U16)

must be unique in the whole target device with the REXYGEN
control system (i.e. in all archiving blocks). Disabled for id = 0.

o1

1vli The level of first high- and low-alarms (HA and LA) which Byte (U8)
differentiates alarms from events and defines the severity of the
alarm /event 1 o1

1vl2 The level of second high- and low-alarms (HHA and LLA) which Byte (U8)

differentiates alarms from events and defines the severity of the
alarm /event J1 e10

10.2. GENERATING ALARMS AND EVENTS 275

Desc Extended description of the alarm which is displayed by the String
diagnostic tools of the REXYGEN system
®Alarm Description

276 CHAPTER 10. ARC — DATA ARCHIVING

ARS — Archive store value

Block Symbol Licence: STANDARD
o £}

ARS

Function Description

The block allow to store value into archive subsystem. Written value must be connected
to the u input. Value could be simple like bool, int or float, string or matrix/vector. Type
of value must be set by the type parameter. The the parameter codetype=13:Reference
must be set for vector or matrix. There is one archive item for each column of the matrix.
Data are stored only if the input RUN=on is set. The parameter subtype allow write alarm
type that write other alarm blocks (for example L->H for bool alarm, HiHi for numeric
alarm). the value of this parameter is in range 0 to 7 and is not used in vector/matrix
items. This parameter is usualy not needed.

Note 1: The archive subsystem is limited for 255 values, but no more then 512 bytes
in one archive item (e.g. 128 values of type Short, 64 values of type Long, 32 values of
type Double). Vector (matrix’s column) is truncated to this size and stored into archive
and no error nor warning is indicated, if the input array is bigger.

Note 2: The string value is limited to 65535 byte (i.e. characters if only characters
from english keyboard is used; UTF-8 encoding is used). String is truncated to this size
and stored into archive and no error nor warning is indicated, if the input string is bigger.
It is recomended to not overcome 4000 bytes, because some reading functions has limited
buffer and could failed for long strings.

Inputs

u Value to store into archive Unknown
RUN Enable execution Bool

10.2. GENERATING ALARMS AND EVENTS 277

Parameters
type Type of all trend buffers ®12 Byte (U8)
1 ... Bool
2 ... Byte (U8)
3 ... Short (T16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
7 . Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference
arc List of archives to write the events to Word (U16)
id Unique archive item ID ®1 Word (U16)
vl Alarm level ®1 Word (U16)
Desc Event description string ®Value Description String
subtype alarm subtype (for special ussage only)
Output

iE Error code Error

278 CHAPTER 10. ARC — DATA ARCHIVING

10.3 Trends recording

ACD — Archive compression using Delta criterion

Block Symbol Licence: STANDARD

u yp
delta Ep

ACD

Function Description

The ACD block is meant for storing compressed analog signals to archives using archive
events.

The main idea is to store the input signal u only when it changes significantly. The
interval between two samples is in the range (tmin,tmax) seconds (rounded to the nearest
multiple of the sampling period). A constant input signal is stored every tmax seconds
while rapidly changing signal is stored every tmin seconds.

When the execution of the block is started, the first input value is stored. This value
will be referred to as w0 in the latter. The rules for storing the following samples are
given by the delta and TR input signals.

For TR = off the condition |u—u0| > delta is checked. If it holds and the last stored
sample occurred more than tmin seconds ago, the value of input u is stored and u0=u
is set. If the condition is fulfilled sooner than tmin seconds after the last stored value,
the error output E is set to 1 and the first value following the tmin interval is stored. At
that time the output E is set back to 0 and the whole procedure is repeated.

For TR = on the input signal values are compared to a signal with compensated trend.
The condition for storing the signal is the same as in the previous case.

The following figure shows the archiving process for both cases: a) TR = off, b)
TR = on. The stored samples are marked by the symbol X.

A

u u
x
u,tdelta :
. . Uytdeltal
Yo
. LI0
uy-delta U-delta : : : :
of T 2% (kDT KT time o Tg 2% (k1T kT, time
a) b)
Inputs
u Signal to compress and store Double (F64)

delta Threshold for storing the signal J0.0 T1e+10 Double (F64)

10.3. TRENDS RECORDING

Outputs

y
E

Parameters

acls

arc

id

tmin

tmax

TR

Desc

The last value stored in the archive

Error flag — indicates that a significant change in the input signal
occurred sooner than the tmin interval passes

off ... No error on An error occurred
Archive class determining the variable type to store ©8

1 ... Bool 5 Word (U16)

2 ... Byte (U8% DWord (W82)... Large (I64)

3 ... Short (I18) Float (F32)

4 Long (I3® Double (F64)

List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Identification code of the event in the archive. This identifier
must be unique in the whole target device with the REXYGEN
control system (i.e. in all archiving blocks). Disabled for id = 0.

©1
The shortest interval between two samples of the u input signal
stored in the archive [s] 10.001 11000000.0 ®1.0
The longest interval between two samples of the u input signal
stored in the archive [s] 1.0 11000000.0 ©1000.0
Trend evaluation flag ®on

off ... The deviation of the input signal from the last stored
value is evaluated
on The deviation of the input signal from the last value’s
trend is evaluated
Extended description of the event which is displayed by the
diagnostic tools of the REXYGEN system
(®Value Description

279

Double (F64)
Bool

Byte (U8)

Word (U16)

Word (U16)

Double (F64)
Double (F64)

Bool

String

280 CHAPTER 10. ARC — DATA ARCHIVING

TRND — Real-time trend recording

Block Symbol Licence: STANDARD

Function Description

The TRND block is designed for storing of up to 4 input signals (ul to u4) in cyclic
buffers in the memory of the target device. The main advantage of the TRND block is
the synchronization with the real-time executive, which allows trending of even very fast
signals (i.e. with very high sampling frequency). In contrary to asynchronous data storing
in the higher level operator machine (host), there are no lost or multiply stored samples.

The number of stored signals is determined by the parameter n. In case the trend
buffer of length 1 samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation) and the data can be further
processed according to the ptypel to ptype4 parameters. The other decimation factor
afac can be used for storing data in archives.

The type of trend buffers can be specified in order to conserve memory of the target
device. The memory requirements of the trend buffers are defined by the formula s-n-1,
where s is the size of the corresponding variable in bytes. The default type Double
consumes 8 bytes per sample, thus for storing n = 4 trends of this type and length
1 = 1000, 8 -4 -1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 16 of this reference guide.

It can happen that the processed input value exceeds the representable limits when
using different type of buffer than Double. In such a case the highest (lowest) repre-
sentable number of the corresponding type is stored in the buffer and an error is binary
encoded to the iE output according to the following table (the unused bits are omitted):

Error Range underflow Range overflow
Input ué u3 u2 ul |u4d u3 u2 ul
Bit number | 11 10 9 8 3 2 1 0
Bit weight | 2048 1024 512 256 | 8 4 2 1

In case of simultaneous errors the resulting error code is given by the sum of the weights
of individual errors. Note that underflow and overflow cannot happen simultaneously on
a single input.

10.3. TRENDS RECORDING

281

It is possible to read, display and export the stored data by the REXYGEN Diagnostics

diagnostic program.

Inputs
ul..ud Analog inputs to be processed and stored in the trend
RUN Enable execution. The data are processed and stored if and only
if RUN = on.
R1 Input for clearing the trend contents. The buffers are cleared
when R1 = on. This flag overpowers the RUN input.
Outputs
yi..y4 Analog outputs of the block set once in pfac executions of the
block to the last values stored in the trend buffers
iE Error code, see the table above
Parameters
n Number of signals to process and store in the trend buffers
1114 04
1 Number of samples reserved in memory for each trend buffer
40 1268435000 ®1000
btype Type of all n trend buffers ©8
1 ..., Bool 4 ... Long 7T ... Float
2 ... Byte 5 Word 8 Double
3 ... Short 6 DWord 10 Large
ptype? The way the signal ui, 7 = 1...4, is processed. The last pfac
samples are processed as selected and the result is stored in the
i-th trend buffer. ®1
1 ..., No processing, just storing data
2 ... Minimum from the last pfac samples
3 ... Maximum from the last pfac samples
4 Sum of the last pfac samples
5 Simple average of the last pfac samples
6 Root mean square of the last pfac samples
T ... Variance of the last pfac samples
pfac Multiple of the block execution period defining the period for
storing the data in the trend buffers. Data are stored with the
period of pfac - T's unless RUN = off, where Tg is the block
execution period in seconds. 41 11000000 ®1
afac Every afac-th sample stored in the trend buffer is also stored in

the archives specified by the arc parameter. There are no data
stored in the archives for afac = 0. Data are stored with the
period of afac-pfac-Tg, where T is the block execution period
in seconds. 10 11000000

Double (F64)
Bool

Bool

Double (F64)

Long (I32)

Long (I32)

Long (I32)

Long (I32)

Long (I32)

Long (I32)

Long (I32)

282 CHAPTER 10. ARC — DATA ARCHIVING

arc List of archives to store the trend data. The format of the list is Word (U16)
e.g. 1,3..5,8. The data will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

id Identification code of the trend block. This identifier must be Word (U16)
unique in the whole target device with the REXYGEN system
(i.e. in all archiving blocks). Disabled for id = 0. o1

Title Title of the trend to be displayed in the diagnostic tools of the String

REXYGEN system, e.g. in the REXYGEN Diagnostics program
OTrend Title
timesrc Source of timestamps. Each data sample in trend buffer is stored Long (I32)
with a timestamp. For fast or short term trends where you are
interested in sample-by-sample timing more than in absolute
time, choose CORETIMER — REXYGEN internal technological
time which is incremented by nominal period each base tick. For
long running trends where you are interested mostly in absolute
time shared with operating system (and possibly synchronized
by NTP), choose RTC. Other values are intended for debug or

special purposes. o1
1 ..., CORETIMER — technological time — at current tick
2 ... CORETIMER-PRECISE — technological time — at block
execution
3 ... RTC — real time clock (wallclock) from operating
system — at current tick
4 ... RTC-PRECISE — real time clock (wallclock) from

operating system — at block execution
4 PFC — raw high precision time (PerFormanceCounter)

10.3. TRENDS RECORDING 283

TRNDV — Real-time trend recording with vector input

Block Symbol Licence: STANDARD
£l

TRNDV

Function Description

The TRND block is designed for storing input signals which arrive at the uVec input in
vector form. On the contrary to the TRND block it allows storing more than 4 signals.
The signals are stored in cyclic buffers in the memory of the target device. The main
advantage of the TRNDV block is the synchronization with the real-time executive, which
allows trending of even very fast signals (i.e. with very high sampling frequency). In
contrary to asynchronous data storing in the higher level operator machine (host), there
are no samples lost or multiply stored.

The number of stored signals is determined by the parameter n. In case the trend
buffer of length 1 samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation). The other decimation factor
afac can be used for storing data in archives.

The type of trend buffers can be specified in order to conserve memory of the target
device. The memory requirements of the trend buffers are defined by the formula s-n-1,
where s is the size of the corresponding variable in bytes. The default type Double
consumes 8 bytes per sample, thus for storing e.g. n = 4 trends of this type and length
1 = 1000, 8 -4 - 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 16 of this reference guide.

It is possible to read, display and export the stored data by the REXYGEN Diagnostics
diagnostic program.

Inputs
uVec Vector signal to record Reference
HLD Input for freezing the cyclic buffers, no data is appended when Bool
HLD = on
Output
iE Error code Error

i REXYGEN general error

284 CHAPTER 10. ARC — DATA ARCHIVING

Parameters
n Number of signals (trend buffers) 11164 ®8 Long (132)
1 Number of samples per trend buffer J2 1268435000 ©1000 Long (I32)
btype Type of all trend buffers ©®8 Long (I32)
1 ... Bool 4 ... Long 7T ... Float
2 ..., Byte 5 Word 8 Double
3 ... Short 6 DWord 10 Large
pfac Multiple of the block execution period defining the period for Long (I32)

storing the data in the trend buffers. Data are stored with the
period of pfac - T's unless RUN = off, where Tg is the block
execution period in seconds. 41 11000000 ©1
afac Every afac-th sample stored in the trend buffer is also stored in Long (I32)
the archives specified by the arc parameter. There are no data
stored in the archives for afac = 0. Data are stored with the
period of afac-pfac-Tg, where T is the block execution period
in seconds. 40 11000000
arc List of archives to store the trend data. The format of the list is Word (U16)
e.g. 1,3..5,8. The data will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

id Identification code of the trend block. This identifier must be Word (U16)
unique in the whole target device with the REXYGEN system
(i.e. in all archiving blocks). Disabled for id = 0. o1

Title Title of the trend to be displayed in the diagnostic tools of the String

REXYGEN system, e.g. in the REXYGEN Diagnostics program
OTrend Title

10.4 Archive management

AFLUSH — Forced archive flushing

Block Symbol Licence: STANDARD

AFLUSH

Function Description

The AFLUSH block is intended for immediate storing of archive data to permanent mem-
ory (hard drive, flash disk, etc.). It is useful when power loss can be anticipated, e.g.
emergency shutdown of the system following some failure. It forces the archive subsystem
to write all archive data to avoid data loss. The write operation is initiated by a rising
edge (off—on) at the FLUSH input regardless of the period parameter of the ARC block.

10.4. ARCHIVE MANAGEMENT

Input

FLUSH

Parameter

arc

Force archive flushing

List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

285

Bool

Word (U16)

286 CHAPTER 10. ARC — DATA ARCHIVING

Chapter 11

STRING — Blocks for string

operations

Contents
CNS — String constant 288
CONCAT — Concat string by pattern« v v v v v v v v v v v 289
FIND — Find a Substring . . . « ¢« v v vt ¢ v e v v v 0 ot o o v oo 290
ITOS — Integer number to string conversion 291
LEN — String length 0oL, 292
MID — Substring Extraction . . . « « v v v v v ¢t v v v v v v o 0 v 0 v 293
PJROCT — Parse JSON string (real output) 294
PJSOCT — Parse JSON string (string output) 295
REGEXP — Regular expresion parser 296
REPLACE — Replace substring v v v v v v v v v v v v oo v 0 v 299
RTOS — Real Number to String Conversion 300
SELSOCT — Selector switch for string signals 301
STOR — String to real number conversion . . « + « v « « v v v o o+« 302

287

288 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

CNS — String constant

Block Symbol Licence: STANDARD

CNS

Function Description

The CNS block is a simple string constant with maximal available size. A value of scv is
always truncated to nmax.

Parameters
scv String (constant) value String
nmax Allocated size of string [bytes] J0 165520 Long (I32)
Output

sy String output value String

289

CONCAT — Concat string by pattern

Block Symbol Licence: STANDARD

sul
su2
su3
su4
sub sy
su6
su7
su8

CONCAT

Function Description

Concatenates up to 8 input strings sul to su8 by pattern specified in ptrn parameter.

Inputs

sul..8 String input value String
Parameters

ptrn Concatenation pattern OW1%2%3%4 String

nmax Allocated size of string [bytes] 10 165520 Long (I32)
Output

sy String output value String

290 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

FIND — Find a Substring

Block Symbol Licence: STANDARD

sut
su2 POSp

FIND

Function Description

The FIND block searches for the string su2 in the string sul and returns a one-based
index into sul if a su2 is found or zero otherwise. Both sul and su2 are truncated to
nmax.

Inputs

sul String input value String

su?2 String input value String
Parameter

nmax Allocated size of string [bytes] J0 165520 Long (I32)
Output

pos Position of substring Long (I32)

291

ITOS — Integer number to string conversion

Block Symbol Licence: STANDARD

ITOS

Function Description

The ITOS block is used for converting an integer into text. The len parameter specifies
the minimum length of the output string. If the number has a smaller number of digits,
zeroes or spaces will be added according to the mode parameter. The radix parameter
specifies the numerical system in which the conversion is to be performed. The output
string does not contain any identification of the numerical system used (e.g. the 0x prefix
for the hexadecimal system).

Input
n Integer input of the block Long (I32)
Output
sy String output value String
Parameters
len Minimum length of output string J0 130 Long (I32)
mode Output string format ®1 Long (I32)
1 ... Align right, fill with spaces
2 ... Align right, fill with zeroes
3 Align left, fill with spaces
radix Radix ®10 Long (I32)
2 ... Binary
8 Octal
10 Decimal

16 Hexadecimal

292 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

LEN — String length

Block Symbol Licence: STANDARD

Function Description

The LEN block returns the actual length of the string in su in UTF-8 characters.

Input

su String input value String
Parameter

nmax Allocated size of string [bytes] J0 165520 Long (I32)
Output

len Length of input string Long (I32)

293

MID — Substring Extraction

Block Symbol Licence: STANDARD

su

MID

Function Description

The MID block extracts a substring sy from su. The parameters 1 and p specify position
and length of the string being extracted in UTF-8 characters. The parameter p is one-
based.

Inputs
su String input value String
Length of output string Long (I32)
Position of output string (one-based) Long (I32)
Parameter
nmax Allocated size of string [bytes] J0 165520 Long (I32)
Output

sy String output value String

294 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

PJROCT — Parse JSON string (real output)

Block Symbol Licence: STANDARD

PJROCT
Function Description

Parses input JSON string jtxt according to specified name* parameters when the input
RUN is on. Output signals are real type.

Inputs

jtxt JSON formated string String

RUN Enable execution Bool
Parameters

namel..8 Name of JSON object String

nmax Allocated size of string [bytes] 10 165520 Long (I32)

yerr Substitute value for an error case Double (F64)
Outputs

y1..8 Block output signal Double (F64)

iE Error code Error

295

PJSOCT — Parse JSON string (string output)

Block Symbol Licence: STANDARD

sy1
sy2
sy3
sy4
sy5
sy6

Rur\gg
iE

PJSOCT

jtxt

Function Description

Parses input JSON string jtxt according to specified name* parameters when the input
RUN is on. Output signals are string type.

Inputs
jtxt JSON formated string String
RUN Enable execution Bool
Parameters
namel..8 Name of JSON object String
nmax Allocated size of string [bytes] 10 165520 Long (I32)
Outputs
syl..8 String output value String

iE Error code Error

296 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

REGEXP — Regular expresion parser

Block Symbol Licence: ADVANCED

REGEXP

Function Description

This block implements a subset of Perl or C# or Unix command grep regular expression
syntax.
Supported syntax is :

e (7i) ...Must be at the beginning of the regex. Makes match case-insensitive
e ~ ... Match beginning of a buffer

e § ... Match end of a buffer

e () ...Grouping and substring capturing

e \s ...Match whitespace

e \S ... Match non-whitespace

e \d ...Match decimal digit

e \n ...Match new line character

e \r ...Match line feed character

e \f ... Match form feed character

e \v ...Match vertical tab character

e \t ...Match horizontal tab character

e \b ... Match backspace character

e + ... Match one or more times (greedy)

e +7 ... Match one or more times (non-greedy)

e * ... Match zero or more times (greedy)

297

e x7 ... Match zero or more times (non-greedy)
e 7 ...Match zero or once (non-greedy)

e x|y ...Match x or y (alternation operator)

\meta ...Match one of the meta characters: ~$().[|*+7]\

\xHH ... Match byte with hex value OxHH, e.g. \x4a

e [...]...Match any character from set. Ranges like [a-z| are supported.

e [~...] ...Match any character except the ones in set. Ranges like [a-z| are sup-

ported.
Examples

e [0-9]+ ...Find first integer in input string (and put it into cap output)

o [-+]7[0-91*\.[0-9]1+([eE][-+]17[0-9]+)7...Find first real number in input string
(and put it into cap output)

o “\sx(.*?)\s*$... Put trimmed input string into capl output

e num\s*:\s*([0-9]*\.[0-9]%) ...Expect input string in JSON format; find inte-

ger parameter num, and put its value into capl

Inputs
text String to parse String
RUN Enable execution Bool
Parameters
expr Regular expresion pattern String
nmax Allocated size of string J0 165534 Long (I32)
bufmax Parser internal buffer size (0 = autodetect) 10 110000000 Long (I32)
Outputs
MATCH Pattern match flag Bool
cap Whole matching string String
capl Captured string (string matched to 1st bracket) String
cap?2 Captured string (string matched to 2nd bracket) String
cap3 Captured string (string matched to 3rd bracket) String
cap4 Captured string (string matched to 4th bracket) String

298 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

capb Captured string (string matched to 5th bracket) String

cap6 Captured string (string matched to 6th bracket) String

cap? Captured string (string matched to 7th bracket) String
()

cap8 Captured string (string matched to 8th bracket String

299

REPLACE — Replace substring

Block Symbol Licence: STANDARD

sul

2
e o
P
REPLACE

Function Description

The REPLACE block replaces a substring from sul by the string su2 and puts the result
in sy. The parameters 1 and p specify position and length of the string being replaced
in UTF-8 characters. The parameter p is one-based.

Inputs

sul String input value String

su2 String input value String

1 Length of origin text Long (I32)

P Position of origin text (one-based) (©0.00E+00 Long (I32)
Parameter

nmax Allocated size of string [bytes] 10 165520 Long (I32)
Output

sy String output value String

300 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

RTOS — Real Number to String Conversion

Block Symbol Licence: STANDARD
[0 syb

RTOS

Function Description

The RTOS converts a real number in u into a string value in su. Precision and format are
specified by the prec and mode parameters.

Input
u Analog input of the block Double (F64)
Output
sy String output value String
Parameters
prec Precision (number of digits) 10 120 ®0.00E+00 Long (I32)
mode Output string format ®1 Long (I32)
1 ... Best fit
2 ... Normal

3 ... Exponential

301

SELSOCT — Selector switch for string signals

Block Symbol Licence: STANDARD

su0
sut
su2
su3
sug
su
sup Y
su7
iSW
SWi1
Sw2
Sw3

SELSOCT

Function Description

The SELSOCT block selects one of the input strings and copy it to the output string
sy. The selection of the active signal u0...u15 is based on the iSW input or the binary
inputs SW1...8W3. These two modes are distinguished by the BINF binary flag. The signal
is selected according to the following table:

iSW SWi SW2 SW3 vy
0 off off off w0
1 on off off ul
2 off on off u2
3 on on off u3
4 off off on u4
b} on off on ub
6 off on on ub
7 on on on u7
Inputs
su0..7 String input value String
iSwW Active signal selector Long (I32)
Swi..3 Binary signal selector Bool
Parameters
BINF Enable the binary selectors Bool
nmax Allocated size of string [bytes] 10 165520 Long (I32)
Output

sy The selected input signal String

302 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

STOR — String to real number conversion

Block Symbol Licence: STANDARD

Function Description

The STOR converts a string in su into a real number in y. An error is signaled in E if
unsuccessful.

Input

su String input value String
Parameter

yerr Substitute value for an error case Double (F64)
Outputs

y Analog output of the block Double (F64)

E Error indicator Bool

Chapter 12

PARAM - Blocks for parameter
handling

Contents

GETPA — Block for remote array parameter acquirement
GETPR, GETPI, GETPB — Blocks for remote parameter acquirement .
GETPS — * Block for remote string parameter acquirement

PARA — Block with input-defined array parameter
PARE — Block with input-defined enumeration parameter
PARR, PARI, PARB — Blocks with input-defined parameter
PARS — * Block with input-defined string parameter
SETPA — Block for remote array parameter setting
SETPR, SETPI, SETPB — Blocks for remote parameter setting
SETPS — * Block for remote string parameter setting.
SGSLP — Set, get, save and load parameters
SILO — Save input value, load output value

SILOS — Save input string, load output string

303

304 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPA — Block for remote array parameter acquirement

Block Symbol Licence: STANDARD

arrRef p
GET ED

GETPA

Function Description

The GETPA block is used for acquiring the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the GETF parameter.
For GETF = off the output arrRef is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the block works in single-shot read mode. In that case the remote parameter
is read only when rising edge (off—on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

e Relative — starts at the level where the GETPA block is located. The string has
to be prefixed with .’ in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

e Relative to task — starts at the root level of the task where the SETPA block is
located. The string has to be prefixed with ’%’ in this case. Examples of paths:
"%CNDR:yp", "/%Lights.ATMT:touts".

e Absolute — complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "taskl.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are displayed in a tree structure
in the REXYGEN Diagnostics program.

Input

GET Input for initiating one-shot parameter read Bool

Outputs

arrRef Array reference Reference

305

E Error flag Bool
Parameters
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode, the remote parameter is read only

when forced to by the GET input (rising edge)
nmax Maximum size of array (256 Long (I32)

306 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPR, GETPI, GETPB — Blocks for remote parameter acquire-
ment

Block Symbols Licence: STANDARD

y k Y
>|GETEt >|GETEt >|GETEF
GETPR GETPI GETPB

Function Description

The GETPR, GETPI and GETPB blocks are used for acquiring the parameters of other blocks
in the model remotely . The only difference among the three blocks is the type of param-
eter which they are acquiring. The GETPR block is used for obtaining real parameters,
the GETPI block for integer parameters and the GETPB block for Boolean parameters.

The blocks operate in two modes, which are switched by the GETF parameter. For
GETF = off the output y (or k, Y) is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the blocks work in single-shot read mode. In that case the remote parameter
is read only when rising edge (off—on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT :touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be read can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

e Relative — starts at the level where the GETPR block (or GETPI, GETPB) is located.
The string has to be prefixed with ?.? in this case. Examples of relative paths:
".GAIN:k", ".Motorl.Position:ycn".

e Relative to task — starts at the root level of the task where the GETPR block (or
GETPI, GETPB, GETPS) is located. The string has to be prefixed with *%’ in this
case. Examples of paths: "/4GAIN:k", "¥Motorl.Position:ycn".

e Absolute — complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on configuration)
the *&” followed by the driver’s name is used at the beginning of the absolute path.
Examples of absolute paths: "taskl.inputs.linl:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are displayed in a tree structure
in the REXYGEN Diagnostics program.

307

Input
GET Input for initiating one-shot parameter read (off—on) Bool
Outputs
y Parameter value, output of the GETPR block Double (F64)
k Parameter value, output of the GETPI block Long (I32)
Y Parameter value, output of the GETPB block Bool
E Error flag Bool
off ... No error
on An error occurred
Parameters
sc String connection to the remote parameter respecting the above String
mentioned notation
GETF Continuous or one-shot mode Bool
off ... Remote parameter is continuously read
on One-shot mode, the remote parameter is read only

when forced to by the GET input (rising edge)

308 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPS — * Block for remote string parameter acquirement

Block Symbol Licence: STANDARD

vb
GETY(

GETPS
Function Description

The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Input
GET Input for initiating one-shot parameter read Bool
Parameters
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode
nmax Allocated size of string Long (132)
Outputs
sy Parameter value String
E Error indicator Bool
off ... No error

on An error occurred

309

PARA — Block with input-defined array parameter

Block Symbol Licence: STANDARD
B)

PARA

Function Description

The PARA block allows, additionally to the standard way of parameter setting, changing
one of its parameters by the input signal. The input-parameter pair is uRef and apar.
The Boolean input LOC (LOCal) determines whether the value of the apar parameter
is read from the input uRef or is input-independent (LOC = on). In the local mode
LOC = on the parameter apar contains the last value of input uRef entering the block
right before LOC was set to on.
The output value is equivalent to the value of the parameter (yRef = apar).

Inputs
uRef Array reference Reference
LoC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Output
yRef Array reference Reference
Parameters
SETS Set array size flag. Use this flag to adjust the size of array when Bool
setting the parameter.
apar Internal value of the parameter Double (F64)

®[0.0 1.0 2.0 3.0 4.0 5.0]

310 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

PARE — Block with input-defined enumeration parameter

Block Symbol Licence: STANDARD
Focs|

PARE

Function Description

The block is similar to the the PARI block with the additional option to assign texts to
numeric values. The corresponding text is set on the output sy. The block has two modes
and the active mode is selected by the LIST parameter. If LIST=o0ff a corresponding text
for the input value is set on the output sy. If LIST=on the input number is considered as
a bitfield, texts are defined for each bit and the output sy is composed of the texts that
correspond to bits which are set. The behavior for undefined values is determined by
the SATF parameter. If SATF=off, undefined values are set to output iy and the output
sy is set to empty text. Undefined values are ignored if SAT=on. The pupstr parameter
has the same format as in the CNA block: <number1>: <descriptioni>|<number2>:
<description2>|<number3>: <description3> ...

Inputs
ip Parameter value Long (I32)
LoC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Parameters
ipar Internal value of parameter ®1 Long (I32)
pupstr Popup list definition String
©1: option A|2: option B|3: option C
NUM Number in string outut Bool
LIST Bitfield mode Bool
SATF Saturation flag Bool
Outputs
iy Integer output of the block Long (I32)

sy String output value String

311

PARR, PARI, PARB — Blocks with input-defined parameter

Block Symbols Licence: STANDARD
;|Eoc YF ;“f)oc k|’ ;|EOCY|’

PARR PARI PARB

Function Description

The PARR, PARI and PARB blocks allow, additionally to the standard way of parameters
setting, changing one of their parameters by the input signal. The input-parameter pairs
are p and par for the PARR block, ip and ipar for the PARI block and finally P and PAR
for the PARB block.

The Boolean input LOC (LOCal) determines whether the value of the par (or ipar,
PAR) parameter is read from the input p (or ip, P) or is input-independent (LOC = on).
In the local mode LOC = on the parameter par (or ipar, PAR) contains the last value
of input p (or ip, P) entering the block right before LOC was set to on. Afterwards it is
possible to modify the value manually.

The output value is equivalent to the value of the parameter y = par, (or k = ipar,
Y = PAR). The output of the PARR and PARI blocks can be additionally constrained by
the saturation limits (lolim,hilim). The saturation is active only when SATF = on.

See also the SHLD block, which can be used for storing a numeric value, similarly as
in the PARR block.

Inputs
P Parameter value (the PARR block) Double (F64)
ip Parameter value (the PARI block) Long (I32)
P Parameter value (the PARB block) Bool
LOC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Output
y Logical output of the PARR block Double (F64)
k Logical output of the PARI block Long (I32)
Y Logical output of the PARB block Bool
Parameter
par Initial value of the parameter (the PARR block) ©®1.0 Double (F64)
ipar Initial value of the parameter (the PARI block) ®1 Long (I32)

PAR Initial value of the parameter (the PARB block) ®on Bool

312

SATF

hilim

lolim

CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

Activation of the saturation limits for the PARR and PARI blocks

off ... Signal not limited
on Saturation limits active
Upper limit of the output signal (the PARR and PARI blocks)
©®1.0
Lower limit of the output signal (the PARR and PARI blocks)
©®-1.0

Bool

Double (F64)

Double (F64)

PARS — * Block with input-defined string parameter

Block Symbol

sp X
Loc®Y
PARS

Function Description

313

Licence: STANDARD

The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be

available in future revisions.

Inputs

sp Parameter value

LOC Activation of local mode
Parameters

spar Internal value of the parameter

nmax Allocated size of string
Output

sy String output of the block

String
Bool

String
Long (I32)

String

314 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SETPA — Block for remote array parameter setting

Block Symbol Licence: STANDARD
5l

SETPA

Function Description

The SETPA block is used for setting the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the SETF parameter.
For SETF = off the remote parameter cs is set to the value of the input vector signal
arrRef at the start and every time when the input signal changes. If the SETF parameter
is set to on, then the block works in one-shot write mode. In that case the remote
parameter is set only when rising edge (off—omn) occurs at the SET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

e Relative — starts at the level where the GETPA block is located. The string has
to be prefixed with .’ in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

e Relative to task — starts at the root level of the task where the SETPA block is
located. The string has to be prefixed with ’%’ in this case. Examples of paths:
"AGAIN:k", "%Motorl.Position:ycn".

e Absolute — complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "taskl.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are displayed in a tree structure
in the REXYGEN Diagnostics program.

Inputs

arrRef Array reference Reference
SET Input for initiating one-shot parameter write Bool

315

Output
E Error flag Bool
Parameters
sc String connection to the parameter String
SETF Continuous or one-shot mode Bool
off ... Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated
only when forced to by the SET input (rising edge)
SETS Set array size flag. Use this flag to adjust the size of array when Bool

setting the parameter.

316 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SETPR, SETPI, SETPB — Blocks for remote parameter setting

Block Symbols Licence: STANDARD

p y ip k P Y
SET E SET E SET E

SETPR SETPI SETPB

Function Description

The SETPR, SETPI, SETPB and SETPS blocks are used for setting the parameters of other
blocks in the model remotely. The only difference among the three blocks is the type of
parameter which they are setting. The SETPR block is used for setting real parameters,
the SETPI block for integer parameters, the SETPB block for Boolean parameters and the
SETPS block for string parameters.

The blocks operate in two modes, which are switched by the SETF parameter. For
SETF = off the remote parameter sc is set to the value of the input signal p (or ip, P)
at the start and every time when the input changes. If the SETF parameter is set to on,
then the blocks work in one-shot write mode. In that case the remote parameter is set
only when rising edge (off—on) occurs at the SET input. Successful modification of the
remote parameter is indicated by zero error output E = off and the output y (or k, Y)
is set to the value of the modified parameter. The error output is set to E = on in case
of write error.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT :touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be set can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

o Relative — starts at the level where the SETPR block (or SETPI, SETPB, SETPS) is
located. The string has to be prefixed with .’ in this case. Examples of relative
paths: " .GAIN:k", " .Motorl.Position:ycn".

e Relative to task — starts at the root level of the task where the SETPR block (or
SETPI, SETPB, SETPS) is located. The string has to be prefixed with *%’ in this
case. Examples of paths: "/4GAIN:k", "¥Motorl.Position:ycn".

e Absolute — complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on configuration)
the &’ followed by the driver’s name is used at the beginning of the absolute path.
Examples of absolute paths: "taskl.inputs.linl:u2", "&EfaDrv.measurements.DER1:n".

317

The order and names of individual hierarchic levels are displayed in a tree structure
in the REXYGEN Diagnostics program.

Inputs
P Desired parameter value at the SETPR block input Double (F64)
ip Desired parameter value at the SETPI block input Long (I32)
P Desired parameter value at the SETPB block input Bool
SET Input for initiating one-shot parameter write (off—on) Bool
Outputs
y Parameter value (the SETPR block) Double (F64)
k Parameter value (the SETPI block) Long (I32)
Y Parameter value (the SETPB block) Bool
E Error flag Bool
off ... No error
on An error occurred
Parameters
sc String connection to the remote parameter respecting the above String
mentioned notation
SETF Continuous or one-shot mode Bool
off ... Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated

only when forced to by the SET input (rising edge)

318 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SETPS — * Block for remote string parameter setting

Block Symbol Licence: STANDARD

sp_syp
SET Ep

SETPS

Function Description

The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

sp Desired parameter value String

SET Input for initiating one-shot parameter write Bool
Parameters

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

nmax Allocated size of string Long (I32)
Outputs

sy Parameter value String

E Error indicator Bool

319

SGSLP — Set, get, save and load parameters

Block Symbol Licence: ADVANCED

Function Description

The SGSLP block is a special function block for manipulation with parameters of other
function blocks in the REXYGEN system configuration. It works also in the Matlab-
Simulink system but its scope is limited to the .mdl file it is included in.

The block can manage up to 16 parameter sets, which are numbered from 0 to 15. The
number of parameter sets is given by the nps parameter and the active set is defined by
the ips input. If the ips input remains unconnected, the active parameter set is ips = 0.
Each set contains up to 16 different parameters defined by the string parameters scO
to sc1b. Thus the SGSLP block can work with a maximum of 256 parameters of the
REXYGEN system. An empty sci string means that no parameter is specified, otherwise
one of the following syntaxes is used:

1. <block>:<param> — Specifies one function block named block and its parameter
param. The same block and parameter are used for all nps parameter sets in this
case.

2. <block>:<param><sep>...<block>:<param> — This syntax allows the parameters
to differ among the parameter sets. In general, each sci string can contain up to
16 items in the form <blok>:<param> separated by comma or semi-colon. E.g. the
third item of these is active for ips = 2. There should be exactly nps items in each
non-empty sct string. If there is less items than nps none of the below described
operations can be executed on the incomplete parameter set.

It is recommended not to use both syntaxes in one SGSLP block, all 16 sci strings
should have the same form. The first syntax is for example used when producing nps
types of goods, where many parameters must be changed for each type of production.
The second syntax is usually used for saving user-defined parameters to disk (see the

320 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SAVE operation below). In that case it is desirable to arrange automated switching of the
ips input (e.g. using the ATMT block from the LOGIC library).

The broot parameter is suitable when all blocks whose parameters are to be con-
trolled by the SGSLP block reside in the same subsystem or deeper in the hierarchy. It
is inserted in front of each <block> substring in the sci parameters. The ’.’ character
stands for the subsystem where the SGSLP block is located. No quotation marks are
used to define the parameter, they are used here solely to highlight a single character.
If the broot parameter is an empty string, all <block> items must contain full path.
For example, to create a connection to the CNR block and its parameter ycn located in
the same subsystem as the SGSLP block, broot = . and sc0 = CNR:ycn must be set. Or
it is possible to leave the broot parameter empty and put the ’.’ character to the sc0
string. See the GETPR or SETPR blocks description for more details about full paths in the
REXYGEN system.

The SGSLP block executes one of the below described operations when a rising edge
(off—on) occurs at the input of the same name. The operations are:

SET — Sets the parameters of the corresponding parameter set ips to the values of the
input signals ui. In case the parameter is successfully set, the same value is also
sent to the yi output.

GET — Gets the parameters of the corresponding parameter set ips. In case the parameter
is successfully read, its value is sent to the yi output.

SAVE — Saves the parameters of the corresponding parameter set ips to a file on the
target platform. The parameters of the procedure and the format of the resulting
file are described below.

LOAD - Loads the parameters of the corresponding parameter set ips from a file on
the target platform. This operation is executed also during the initialization of the
block but only when 0 < ipsO < nps — 1. The parameters of the procedure and
the format of the file are described below.

The LOAD and SAVE operations work with a file on the target platform. The name of
the file is given by the fname parameter and the following rules:

e If no extension is specified in the fname parameter, the .rxs (ReX Status file)
extension is added.

e A backup file is created when overwriting the file. The file name is preserved, only

the extension is modified by adding the * ’ character right after the ’.” (e.g. when
no extension is specified, the backup file has a . rxs extension.

e The path is relative to the folder where the archives of the REXYGEN system are
stored. The file should be located on a media which is not erased by system restart
(flash drive or hard drive, not RAM).

321

The SAVE operation stores the data in a text file. Two lines are added for each
parameter sci, ¢ = 0,...,m, where m < 16 defines the nonempty scm string with the
highest number. The lines have the form:

"<block>:<param>", ..., "<block>:<param>"

<value>, ..., <value>

There are nps individual items "<block>:<param>" which are separated by commas.
The second line contains the same number of <value> items which contain the value
of the parameter at the same position in the line above. Note that the format of the
file remains the same even for sci containing only one <block>:<param> item (see the
syntax no. 1 above). The "<block>:<param>" item is always listed nps-times in the file,
which allows seamless switching of the sci parameters syntax without modifying the file.

Consider using the SILO block if working with only a few values.

Inputs

u
ips
SET

GET

SAVE
LOAD
Outputs

yi
E

i-th analog input signal, ¢ = 0,...,15
Parameter set index (numbered from zero)

Set the parameters of the ips parameter set according to the
values of the ui inputs. The values can be found at the yz outputs
after a successful operation.

Get the parameters of the ips parameter set. The values can be
found at the yi outputs after a successful operation.

Save the ips parameter set to a file on the target device
Load the ips parameter set from a file on the target device

i-th analog output signal, ¢ =0,...,15
Error flag

off ... No error

on An error occurred (see iE)

Double (F64)
Long (I32)
Bool

Bool

Bool
Bool

Double (F64)
Bool

322 CHAPTER 12. PARAM — BLOCKS FOR PARAMETER HANDLING
iE Error or warning code of the last operation Long (I32)
0 Operation successful
1..... Fatal error of the Matlab system (only in Simulink),
the block is no longer executed
2 ... Error opening the file for reading (LOAD operation)
3 ... Error opening the file for writing (SAVE operation)
4 ... Incorrect file format
5 The ips parameter set not found in the file
6 Parameter not found in the configuration, name
mismatch (LOAD operation)
T ... Unexpected end of file
8 Error writing to file (disk full?)
9 Parameter syntax error (the ? : > character not found)
10 Only whitespace in the parameter name
11 Error creating the backup file
12 Error obtaining the parameter value by the GET
operation (non-existing parameter?)
13 Error setting the parameter value by the SET
operation (non-existing parameter?)
14 Timeout during obtaining/setting the parameter
15 The specified parameter is read-only
16 The ips parameter is out of range
Parameters
nps Number of parameter sets J1 116 ©®1 Long (I32)
ips0O Index of parameter set to load and set during the block Long (I32)
initialization. No set is read for ipsO < 0 or ipsO > nps
1-1 115
iprec Precision (number of digits) for storing the values of double type Long (I32)
in a file J2 115 ©12
icolw Requested column width in the status file. Spaces are appended Long (I32)
to the parameter value when necessary. J0 122
fname Name of the file the SAVE and LOAD operations work with String
Ostatus
broot Root block in hierarchy, inserted at the beginning of all sci String
parameters, see the description above ©.
sct Strings defining the connection of u¢ inputs and y¢ outputs to String

the parameters, : = 0, ..., 15, see details above

323

SILO — Save input value, load output value

Block Symbol Licence: STANDARD

u

LOAD lastErr
SILO

Function Description

The SILO block can be used to export or import a single value to/from a file. The value
is saved when a rising edge (off—on) occurs at the SAVE input and the value is also set
to the y output. The value is loaded at startup and when a rising edge (off—on) occurs
at the LOAD input.

The outputs E and lastErr indicate an error during disk operation. The E indicator is
reset on falling edge at the SAVE or LOAD input while the lastErr output holds the value
until another disk operation is invoked. If the error occurs during the LOAD operation, a
substitute value yerr is set to the y output.

Alternatively it is possible to write or read the value continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Use the SGSLP function block for advanced and complex operations.

Inputs

u Input signal Double (F64)

SAVE Save value to file Bool

LOAD Load value from file Bool
Parameters

fname Name of persistent storage file String

CSF Flag for continuous saving Bool

CLF Flag for continuous loading Bool

yerr Substitute value for an error case Double (F64)
Outputs

y Output signal Double (F64)

E Error flag Bool

324 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

lastErr Result of last operation Long (I32)

325

SILOS — Save input string, load output string

Block Symbol Licence: STANDARD

su sy
SAVE E

LOAD
APPEND lastErr
SILOS

Function Description

The SILOS block can be used to export or import a string to/from a file. The string is
saved when a rising edge (off—on) occurs at the SAVE input and the string is also set to
the sy output. The string is loaded at startup and when a rising edge (off—on) occurs
at the LOAD input.

If a logical true (on) is brought to the APPEND input, the input string is added to the
end of the file when it is saved. This mode is useful for logging events into text files. This
input signal has no effect on loading from the file.

The LLO parameter is intended for choosing whether to load the entire file (off) or
its last line only (on).

The outputs E and lastErr indicate an error during disk operation. The E indicator
is reset on falling edge at the SAVE or LOAD input while the lastErr output holds the
value until another disk operation is invoked.

Alternatively it is possible to write or read the string continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Inputs
su String input of the block ©®0 String
SAVE Save string to file Bool
LOAD Load string from file Bool
APPEND Append saved string to file Bool
Outputs
sy String output of the block String
E Error indicator Bool
off ... No error
on An error occurred

lastErr Result of last operation Long (I32)

326

Parameters

fname
CSF
CLF
LLO
nmax

CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

Name of persistent storage file
Continuous saving

Continuous loading

Last line only loading
Allocated size of string

10 165520

String
Bool

Bool

Bool

Long (I32)

Chapter 13

MODEL — Dynamic systems

simulation

Contents
CDELSSM — Continuous state space model of a linear system with
timedelay e e e e e 328
CSSM — Continuous state space model of a linear system 331
DDELSSM — Discrete state space model of a linear system with time
delay i e e e e e e e e e e e e e e e e 333
DSSM — Discrete state space model of a linear system 335
EKF — Extended (nonlinear) Kalman filter 337
FOPDT — First order plus dead-time model 340
MDL — Processmodel 0000t 341
MDLI — Process model with input-defined parameters 342
MVD — Motorized valvedrive, 343
NSSM — Nonlinear State-Space Model 344
SOPDT — Second order plus dead-time model 347

327

328 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

CDELSSM — Continuous state space model of a linear system
with time delay

Block Symbol Licence: ADVANCED

u16
CDELSSM

Function Description

The CDELSSM block (Continuous State Space Model with time DELay) simulates behavior
of a linear system with time delay del

dfz(f) = Aca(t) + Beu(t — del), z(0) = 20
y(t) = Cex(t) + Deult),

where z(t) € R" is the state vector, x0 € R™ is the initial value of the state vector,
u(t) € R™ is the input vector, y(t) € RP is the output vector. The matrix A, € R"*" is
the system dynamics matrix, B, € R™"*™ ig the input matrix, C. € RP*™ is the output
matrix and D, € RP*™ is the direct transmission (feedthrough) matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model

z(k+1)T) = Agx(kT)+ Bau((k—d)T) + Bgpu((k —d+ 1)T), xz(0) = 20
y(kT) = Cex(kT)+ Du(kT),

where k € {1,2,...} is the simulation step, T is the execution period of the block in
seconds and d is a delay in simulation step such that (d—1)T" < del < d.T'. The period T
is not entered in the block, it is determined automatically as a period of the task (TASK,
QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = w(kT) for ¢t € [kT, (k + 1)T'), then the

329

matrices Ag, Bg1 and Bgo are determined by
Ad = €ACT

A
By = eAC(T_A)/ e B.dr
0
T-—A
By = / e” B.dr,
0

where A = del — (d — 1)T.

Computation of discrete matrices Ag, Bg1 and Bygs is based on a method described
in [5], which uses Padé approximations of matrix exponential and its integral and scaling
technique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its Bool
initial value x0. The simulation continues on the falling edge of
R1 (on—off).
HLD Simulation output holds its value if HLD=on. Bool
ul..ulé Simulated system inputs. First m simulation inputs are used Double (F64)
where m is the number of columns of the matrix Bec. ®0.0
Outputs
iE Block error code Error
0 0.K., the simulation runs correctly
-213 .. incompatibility of the state space model matrices
dimensions

-510 .. the model is badly conditioned (some working matrix
is singular or nearly singular)
xxx ... error code xxx of REXYGEN, see appendix C for
details
yl..y16 Simulated system outputs. First p simulation outputs are used Double (F64)
where p is the number of rows of the matrix Cc.

Parameters
UD Matrix Dc usage flag. If UD=offthen the Dc matrix is not used Bool
for simulation (simulation behaves as if the Dc matrix is zero).
del Model time delay [s]. 10.0 ®0.0 Double (F64)
is Order of the Padé approximation of the matrix exponential for Long (I32)

the computation of the discretized system matrices.
J0 14 ©®2.00E+00
eps Required accuracy of the Padé approximation. Double (F64)
10.011.0 ®le-15

330 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Ac Matrix (n x n) of the continuous linear system dynamics. Double (F64)
Bc Input matrix (n x m) of the continuous linear system. Double (F64)
Cc Output matrix (p X n) of the continuous linear system. Double (F64)
Dc Direct transmission (feedthrough) matrix (p x m) of the Double (F64)

continuous linear system. The matrix is used only if the
parameter UD=on. If UD=off, the dimensions of the Dc matrix
are not checked.
x0 Initial value of the state vector (of dimension n) of the continuous Double (F64)
linear system.

331

CSSM — Continuous state space model of a linear system

Block Symbol Licence: ADVANCED

Function Description

The CSSM block (Continuous State Space Model) simulates behavior of a linear system

dxdit) = Acx(t) + Beu(t), z(0) = z0
y(t) = Cex(t) + Deu(t),

where x(t) € R" is the state vector, z0 € R™ is the initial value of the state vector,
u(t) € R™ is the input vector, y(t) € RP is the output vector. The matrix A, € R™"*" is
the system dynamics matrix, B, € R™*™ is the input matrix, C. € RP*™ is the output
matrix and D, € RP*™ is the direct transmission (feedthrough) matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The 20 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model

z(E+1)T) = Agx(kT)+ Bqu(kT), z(0) = z0
y(kT) = Cex(kT)+ Du(kT),
where k € {1,2,...} is the simulation step, T" is the execution period of the block in
seconds. The period T is not entered in the block, it is determined automatically as a
period of the task (TASK, QTASK nebo IOTASK) containing the block.
If the input u(t) is changed only in the moments of sampling and between two con-

secutive sampling instants is constant, i.e. u(t) = w(kT') for t € [kT, (k + 1)T'), then the
matrices Ag and By are determined by

Ay = eeT

T
By = / e B.dr
0

332 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Computation of discrete matrices Ay and By is based on a method described in [5],
which uses Padé approximations of matrix exponential and its integral and scaling tech-
nique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its Bool
initial value x0. The simulation continues on the falling edge of
R1 (on—off).
HLD Simulation output holds its value if HLD=on. Bool
ul..ul6 Simulated system inputs. First m simulation inputs are used Double (F64)
where m is the number of columns of the matrix Be. ©0.0
Outputs
iE Block error code Error
0 0.K., the simulation runs correctly
-213 .. incompatibility of the state space model matrices
dimensions

-510 .. themodel is badly conditioned (some working matrix
is singular or nearly singular)
xxx ... error code xxx of REXYGEN, see appendix C for
details
yil..y16 Simulated system outputs. First p simulation outputs are used Double (F64)
where p is the number of rows of the matrix Cc.

Parameters

UD Matrix Dc usage flag. If UD=offthen the Dc matrix is not used Bool
for simulation (simulation behaves as if the Dc matrix is zero).
is Order of the Padé approximation of the matrix exponential for Long (I32)

the computation of the discretized system matrices.
10 14 ©2.00E+00

eps Required accuracy of the Padé approximation. Double (F64)
10.011.0 ®le-15

Ac Matrix (n x n) of the continuous linear system dynamics. Double (F64)

Bc Input matrix (n x m) of the continuous linear system. Double (F64)

Cc Output matrix (p X n) of the continuous linear system. Double (F64)

Dc Direct transmission (feedthrough) matrix (p x m) of the Double (F64)

continuous linear system. The matrix is used only if the
parameter UD=on. If UD=o0ff, the dimensions of the Dc matrix
are not checked.
x0 Initial value of the state vector (of dimension n) of the continuous Double (F64)
linear system.

333

DDELSSM — Discrete state space model of a linear system with
time delay

Block Symbol Licence: ADVANCED

u16
DDELSSM

Function Description

The DDELSSM block (Discrete State Space Model with time DELay) simulates behavior
of a linear system with time delay del

z(k+1) = Agz(k)+ Bau(k —d), z(0) = z0
y(k) = Cax(k) + Dgu(k),

where k is the simulation step, z(k) € R™ is the state vector, 0 € R™ is the initial
value of the state vector, u(k) € R™ is the input vector, y(k) € RP is the output vector.
The matrix Ay € R™*" is the system dynamics matrix, By € R™*™ is the input matrix,
Cy € RP*™ is the output matrix and Dy € RP*™ is the direct transmission (feedthrough)
matrix. Number of steps of the delay d is the largest integer such that d.T' < del, where
T is the block execution period.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The 20 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its Bool
initial value x0. The simulation continues on the falling edge of
R1 (on—off).
HLD Simulation output holds its value if HLD=on. Bool
ul..ulé Simulated system inputs. First m simulation inputs are used Double (F64)

where m is the number of columns of the matrix Bd. 0.0

334 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Outputs
iE Block error code Error
0 0.K., the simulation runs correctly
-213 .. incompatibility of the state space model matrices
dimensions
xxx ... error code xxx of REXYGEN, see appendix C for
details

yl..y16 Simulated system outputs. First p simulation outputs are used Double (F64)
where p is the number of rows of the matrix Cd.

Parameters
UD Matrix Dd usage flag. If UD=offthen the Dd matrix is not used Bool
for simulation (simulation behaves as if the Dd matrix is zero).
del Model time delay [s]. 10.0 ©0.0 Double (F64)
Ad Matrix (n x n) of the discrete linear system dynamics. Double (F64)
Bd Input matrix (n x m) of the discrete linear system. Double (F64)
cd Output matrix (p x n) of the discrete linear system. Double (F64)
Dd Direct transmission (feedthrough) matrix (p x m) of the discrete Double (F64)

linear system. The matrix is used only if the parameter UD=on.
If UD=o0ff, the dimensions of the Dd matrix are not checked.

x0 Initial value of the state vector (of dimension n) of the discrete Double (F64)
linear system.

335

DSSM — Discrete state space model of a linear system

Block Symbol Licence: ADVANCED

Function Description

The DSSM block (Discrete State Space Model) simulates behavior of a linear system

z(k+1) = Aqx(k)+ Bqu(k), 2(0) =20
y(k) = Cax(k) + Dau(k),

where k is the simulation step, z(k) € R™ is the state vector, z0 € R”™ is the initial
value of the state vector, u(k) € R™ is the input vector, y(k) € RP is the output vector.
The matrix Ay € R™*" is the system dynamics matrix, By € R™*™ is the input matrix,
Cyq € RP*™ is the output matrix and Dy € RP*™ is the direct transmission (feedthrough)
matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The 20 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its Bool
initial value x0. The simulation continues on the falling edge of
R1 (on—off).
HLD Simulation output holds its value if HLD=on. Bool
ul..ulé Simulated system inputs. First m simulation inputs are used Double (F64)

where m is the number of columns of the matrix Bd. ®0.0

336 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Outputs
iE Block error code Error
0 0.K., the simulation runs correctly
-213 .. incompatibility of the state space model matrices
dimensions
xxx ... error code xxx of REXYGEN, see appendix C for
details

yl..y16 Simulated system outputs. First p simulation outputs are used Double (F64)
where p is the number of rows of the matrix Cd.

Parameters
UD Matrix Dd usage flag. If UD=offthen the Dd matrix is not used Bool
for simulation (simulation behaves as if the Dd matrix is zero).
Ad Matrix (n x n) of the discrete linear system dynamics. Double (F64)
Bd Input matrix (n x m) of the discrete linear system. Double (F64)
Cd Output matrix (p x n) of the discrete linear system. Double (F64)
Dd Direct transmission (feedthrough) matrix (p x m) of the discrete Double (F64)

linear system. The matrix is used only if the parameter UD=on.
If UD=o01f, the dimensions of the Dd matrix are not checked.

x0 Initial value of the state vector (of dimension n) of the discrete Double (F64)
linear system.

337

EKF — Extended (nonlinear) Kalman filter

Block Symbol Licence: MODEL
funcRef X
g P
nz trP
SL(cmd
RST f
HO
PO err

EKF

Function Description

The block implements a nonlinear state estimator known as Extended Kalman filter.
The goal is to provide estimates of unmeasurable state quantities of a nonlinear dynamic
system described by a state space model dz/dt = f(z,u) + w(t),y = h(z,u) + v(t) for
a continuous-time case and z(k + 1) = f(x(k), u(k)) + w(k),y(k) = h(x(k), u(k)) +v(k)
for the case of a discrete-time system. The variables w, v are the process and observation
noises which are both assumed to be zero mean multivariate Gaussian processes with
covariance) and R specified in the block parameters. The Extended Kalman filter is the
nonlinear version of the Kalman filter which linearizes the state and output equations
about the current working point. It is a predictor-corrector type algorithm which switches
between open-loop prediction using the state equation and correction of the estimates
by directly measured output quantities. The measurements can be supplied to the filter
non-equidistantly in an arbitrary execution period of the block.

The prediction step is run in each execution period and solves the state equation
by numerical integration, starting from an initial value z0 and initial covariance PO.
Various numerical methods, chosen by the user specified parameter solver, are available
to perform the integration of the vector state differential equation. A special choice of
solver = 1 signalizes the discrete-time system case for which the numerical integration
reduces to simple evaluation of the recursive formula given by the first-order difference
equation in z(k + 1) = f(z(k),u(k)). Apart from the state vector, also its covariance
matrix P is propagated in time, capturing the uncertainty of the estimates in the form of
their (co)variances. Please refer to the documentation of the NSSM block for more details
about the available numerical integration algorithms.

The filtering correction step takes place whenever the input of the block is set to
nz > 0. This signalizes that new vector of measurements is available at the z input and
it is used to correct the state and its covariance estimates from the prediction step. Mul-
tiple right sides of the output equation can be implemented in the cooperating REXLANG
block. This may be useful e.g. for systems equipped with various sensors providing their
data asynchronously to each other (and with respect to the block execution times) with
different sampling periods. For the setting nz = 0, the user algorithm signalizes no out-

338

CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

put data available in the current execution period, forcing the filter to extrapolate the
state estimates by performing the prediction step only.

The Extended Kalman filter is generally not an optimal filter in the sense of mini-
mization of the mean-squared error of the obtained state estimates. However, it provides
modest performance for sufficiently smooth nonlinear systems and is considered to be a
de facto standard solution for nonlinear estimation. A special case is obtained by setting
linear state and output equations in the cooperating REXLANG block. This case leads to
standard linear Kalman filter which is stochastically optimal for the formulated state
estimation problem.

Inputs

funcRef
u

z

nz

Qk

Rk

RST
HLD

x0

PO

Cooperating REXLANG block reference

Input vector of the model

Output (mesurement) vector of the model

Index of the actual output vector set J1
State noise covariance matrix

Output noise covariance matrix

Block reset

Hold

Initial state vector

Initial covariance matrix

Parameters

nmax

solver

Allocated size of output matrix (total number of items)
15 110000 ©20

Numeric integration method ©2
1 Discrete equation
2 ... Euler (1st order)
i 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
T ... 4th order Runge-Kutha
8 Implicit Euler
9 Implicit Euler(more iteration)
10 2nd order Adams-Moulton implicit
11 2nd order Adams-Moulton implicit (more iterations)
12 3rd order Adams-Moulton implicit
13 3nd order Adams-Moulton implicit (more iterations)
14 2nd order RadaullA implicit
15 2nd order RadaullA implicit (more iterations)
16 3rd order RadaullA implicit

17 3rd order RadaullA implicit (more iterations)

Reference
Reference
Reference
Long (I32)
Reference
Reference
Bool

Bool

Reference

Reference

Long (I32)

Long (I32)

Outputs

b'd
P
trP

cmd

df
err

Model state vector

Model state covariance matrix

Trace of model state covariance matrix

Cooperating REXLANG block requested function
Vector reference set by cooperating REXLANG block
Matrix reference set by cooperating REXLANG block
Error code (0 is OK, see SystemLog for details)

339

Reference
Reference
Reference
Long (I32)
Reference
Reference
Long (I32)

340 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

FOPDT — First order plus dead-time model

Block Symbol Licence: STANDARD
[0y

FOPDT

Function Description

The FOPDT block is a discrete simulator of a first order continuous-time system with time
delay, which can be described by the transfer function below:

P(S) — k0 . e—del-s
(tau-s+1)

The exact discretization at the sampling instants is used for discretization of the
P(s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the FOPDT block.

Input
u Analog input of the block ©0.0 Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
kO Static gain ©1.0 Double (F64)
del Dead time [g] ©0.0 Double (F64)
tau Time constant ®1.0 Double (F64)
nmax Size of delay buffer (number of samples) for the time delay del. Long (I32)

Used for internal memory allocation.
410 110000000 ®1.00E+03

341

MDL — Process model

Block Symbol Licence: STANDARD
[0 yp

MDL

Function Description

The MDL block is a discrete simulator of continuous-time system with transfer function

Koest

Fo) = s D+

where Ko > 0 is the static gain k0, D > 0 is the time-delay del and 7,7 > 0 are the
system time-constants taul and tau2.

Input
u Analog input of the block ©0.0 Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
kO Static gain ©®1.0 Double (F64)
del Dead time [s] ©0.0 Double (F64)
taul The first time constant ®1.0 Double (F64)
tau2 The second time constant ®2.0 Double (F64)
nmax Size of delay buffer (number of samples) for the time delay del. Long (I32)

Used for internal memory allocation.
410 110000000 ©®1.00E+03

342 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

MDLI — Process model with input-defined parameters

Block Symbol Licence: STANDARD

u

kO

del yp
tau1
tau2

MDLI

Function Description

The MDLI block is a discrete simulator of continuous-time system with transfer function

Koe_DS

Fls) = (m1s+1)(mes+ 1)’

where Ky > 0 is the static gain k0, D > 0 is the time-delay del and 71,72 > 0 are the
system time-constants taul and tau2. In contrary to the MDL block the system is time
variant. The system parameters are determined by the input signals.

Inputs
u Analog input of the block ©0.0 Double (F64)
kO Static gain 0.0 Double (F64)
del Dead time [g] ©0.0 Double (F64)
taul The first time constant ©®0.0 Double (F64)
tau2 The second time constant ©®0.0 Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
nmax Size of delay buffer (number of samples) for the time delay del. Long (I32)

Used for internal memory allocation.
110 110000000 1 .00E+03

MVD — Motorized valve drive

Block Symbol

Function Description

UP &
DN LS

MVD

343

Licence: STANDARD

The MVD block simulates a servo valve. The UP (DN) input is a binary command for opening
(closing) the valve at a constant speed 1/tv, where tv is a parameter of the block. The
opening (closing) continues for UP = on (DN = on) until the full open y = hilim (full
closed y = lolim) position is reached. The full open (full closed) position is signalized
by the end switch HS (LS). The initial position at start-up is y = y0. If UP = DN = on or
UP = DN = off, then the position of the valve remains unchanged (neither opening nor

closing).

Inputs

UP
DN

Outputs

y
HS

LS

Parameters

yo
tv
hilim

lolim

Open
Close

Valve position
Upper end switch
Lower end switch

Initial valve position

Bool
Bool

Double
Bool
Bool

®»0.0 Double

Time required for transition between y =0 and y =1 [5] Double

Upper limit position (open)
Lower limit position (closed)

©10.0
®1.0 Double
®»0.0 Double

(F64)

(F64)
(F64)

(F64)
(F64)

344 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

NSSM — Nonlinear State-Space Model

Block Symbol Licence: MODEL
funcRef X
u y
cmd
RST
f
HLD df
x0 err

NSSM

Function Description

The block provides a solution to a nonlinear continuous-time state-space model in the
form of dz/dt = f(z,u),y = h(z,u) or its discrete-time counterpart defined as z(k+1) =
f(z(k),u(k)),y(k) = h(z(k),u(k)). The equation is discretized into a form z(t) =
F(xz(t —T),u(t)), where T is sampling period of the NSSM block. The method used
for discretization (i.e. a method to numerically solve the vector differential equation)
depends on the solver parameter . Various methods for numerical integration are im-
plemented including one step methods (like Runge-Kutta, Euler), multistep methods
(Adams-Bashforth), and also implicit methods (Adams-Moulton). It is possible to choose
different method order for each kind to find a suitable precision vs computational time
trade-off. The block does not support variable step algorithms (the time-step for the
solver is always the same as the execution period of the task where the block is inserted).

The non-linear-vector function f(z,u) must be implemented in the REXLANG block
that is connected to the NSSM block in a special way. The input funcRef of the NSSM block
must be connected to the output y0O of the REXLANG block and the output yO can not be
used internally in the code/script of the REXLANG block. The outputs x, £ and df of the
NSSM block must be connected to the inputs of the REXLANG block. These inputs must
be processed in the REXLANG code as an input array. The main function of the REXLANG
block must set the value of f(z,u) into the £ vector (e.g. into the input array, where f is
connected) and the matrix df(z,u)/dz into the af matrix.

The NSSM block calls the main-function of the REXLANG block when needed for nu-
merical integration of the differential equation system (for example the Runge-Kutta
method performs 4 calls in each execution period with different x-vector values). The
REXLANG block should be disabled in the schematics of the algorithm to prevent its exe-
cution REXYGEN system itself. If the REXLANG must be executed by REXYGEN (e.g. for
compute output function y = h(x,u)), it is recommended to connect the output cmd
of the NSSM block into input of the REXLANG block to distinguish between calling by the
NSSM block (cmd = 0) and calling by REXYGEN system (cmd = —1).

Notes:

345

e computation of the df(x,u)/dz is necessary for implicit methods only (explicit
methods do not use it).

e size of the vector x (and also £, df) is defined by the size of the vector x0. The size
should be changed by reset only (the RST input).

e solver=1: discrete signalizes a discrete-time state space model with the func-
tions £ and h designating the right side of the corresponding difference equation.
This mode does not require numerical integration and the algorithm reduces to
the execution of the code in the connecnted REXLANG block; the mode is used
mainly for symmetry with the EKF block.

e for NSSM connecting the output cmd is necessary, because cmd>0 indicate number
of measurement and REXLANG must return f = h(z,u), df = dh(z,u)/dz.

Inputs
funcRef Cooperating REXLANG block reference Reference
u Input vector of the model Reference
RST Block reset Bool
HLD Hold Bool
x0 Initial state vector Reference
Parameters
nmax Allocated size of output matrix (total number of items) Long (I32)
45 110000 20
solver Numeric integration method ®2 Long (I32)
1 Discrete equation
2 ... Euler (1st order)
3 ... 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7T ... 4th order Runge-Kutta
8 Implicit Euler
9 Implicit Euler(more iteration)
10 2nd order Adams-Moulton implicit
11 2nd order Adams-Moulton implicit (more iterations)
12 3rd order Adams-Moulton implicit
13 3nd order Adams-Moulton implicit (more iterations)
14 2nd order RadaullA implicit
15 2nd order RadaullA implicit (more iterations)
16 3rd order RadaullA implicit

17 3rd order RadaullA implicit (more iterations)

346

Outputs

X

y
cmd

df

err

CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Model state vector

Model output vector

Cooperating REXLANG block requested function
Vector reference set by cooperating REXLANG block
Matrix reference set by cooperating REXLANG block
Error code (0 is OK, see SystemLog for details)

Reference
Reference
Long (I32)
Reference
Reference
Long (I32)

347

SOPDT — Second order plus dead-time model

Block Symbol Licence: STANDARD

SOPDT

Function Description

The SOPDT block is a discrete simulator of a second order continuous-time system with
time delay, which can be described by one of the transfer functions below. The type of
the model is selected by the itf parameter.

bl - b0
itf=1: P(s) = pol-s5+p .e~dels
s? + pal - s+ pa0
kO (tau - 1
itf=2: P(s) = (au-s+ 1) L e~delss

(taul-s+1)(tau2-s+1)

k0 -om? - (tau/om-s+1) _4el.s
(s2+2-%i-om-s+ om?) -

kO (tau-s+1)

. —del-s
tf=4: P = - - 7.
* (5) (taul-s+1)s c

itf=3: P(s) =

For simulation of first order plus dead time systems (FOPDT) use the LLC block with
parameter a set to zero.

The exact discretization at the sampling instants is used for discretization of the
P(s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the SOPDT block.

Input
u Analog input of the block 0.0 Double (F64)
Output
y Analog output of the block Double (F64)
Parameters
itf Transfer function form ©®1.00E+00 Long (I32)
1 ... A general form
2 ... A form with real poles
3 ... A form with complex poles

4 ... A form with integrator

348

kO
tau
taul
tau2
om
xi
pbO
pbl
pa0
pal
del

nmax

CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Static gain ®1.0
Numerator time constant ©0.0
The first time constant 1.0
The second time constant 1.0
Natural frequency 1.0
Relative damping coefficient 1.0
Numerator coefficient: s° ©®1.0
Numerator coefficient: s! ©®1.0
Denominator coefficient: s° ®1.0
Denominator coefficient: s' ©®1.0
Dead time [g] ©0.0

Size of delay buffer (number of samples) for the time delay del.
Used for internal memory allocation.
110 110000000 ®1.00E+03

Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Chapter 14

MATRIX — Blocks for matrix and
vector operations

Contents

CNA — Array (vector/matrix) constant 352
MB_DASUM — Sum of the absolute values 353
MB_DAXPY — Performs y := a*x + y for vectors x,y 354
MB_DCOPY — Copies vector X to vector ¥ « « « v v v v v v v ¢ 0 v o o s 356
MB_DDOT — Dot product of two vectors 358
MB_DGEMM — Performs C := alpha*op(A)*op(B) + beta*C, where
op(X) =Xorop(X) =X T . o vt i it ittt et e 360
MB_DGEMV — Performs y :— alpha*A*x + beta*y or y := alpha*A ~T*x

+ beta*y ... e e e e e e e e e e 362
MB_DGER — Performs A :— alpha*x*y"T + A 364
MB_DNRM2 — Euclidean norm of a vector 366
MB_DROT — Plain rotation of a vector 367
MB_DSCAL — Scales a vector by aconstant 369
MB_DSWAP — Interchanges two vectors 370
MB_DTRMM — Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X"T for triangular matrix A . .. 372
MB_DTRMV — Performs x := A*x or x := A~T*x for triangular
matrix At e 374
MB_DTRSV — Solves one of the system of equations A*x — b or
A~"T*x = b for triangular matrix A 377
ML_DGEBAK — Backward transformation to ML_DGEBAL of left or right
CIZENVECEOIS + ¢ v v v v v v v e v v v o o s o o s o b oot oo o e 380
ML_DGEBAL — Balancing of a general real matrix 382

ML_DGEBRD — Reduces a general real matrix to bidiagonal form by
an orthogonal transformation 384

349

350 CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGECON — Estimates the reciprocal of the condition number of

ageneral real Matrix v v v v i i e e e e e e e e e e e 386
ML_DGEES — Computes the eigenvalues, the Schur form, and, op-
tionally, the matrix of Schur vectors 388
ML_DGEEV — Computes the eigenvalues and, optionally, the left
and/or right eigenvectors 0oL 390
ML_DGEHRD — Reduces a real general matrix A to upper Hessenberg
form e e e e e e e e e e e e 392
ML_DGELQF — Computes an LQ factorization of a real M-by-N ma-
15 0 394
ML_DGELSD — Computes the minimum-norm solution to a real lin-
ear least squares problem00 0000, 396
ML_DGEQRF — Computes an QR factorization of a real M-by-N
matrix A it e 398
ML_DGESDD — Computes the singular value decomposition (SVD)
ofareal M-by-N matriXx A . . & ¢ v v vt e v v v o ot o o o o 0 oo 400

ML_DLACPY — Copies all or part of one matrix to another matrix . 402
ML_DLANGE — Computes one of the matrix norms of a general matrix404

ML_DLASET — Initilizes the off-diagonal elements and the diagonal

elements of a matrix to given values 406
ML_DTRSYL — Solves the real Sylvester matrix equation for quasi-
triangular matrices Aand B 0000 i e e e e 408
MX_AT — Get Matrix/Vector element 410
MX_ATSET — Set Matrix/Vector element 411
MX_CNADD — Add scalar to each Matrix/Vector element 412
MX_CNMUL — Multiply a Matrix/Vector by a scalar 413
MX_CTODPA — Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations L0000 0oL 414
MX_DIM — Matrix/Vector dimensions 416
MX_DIMSET — Set Matrix/Vector dimensions 417
MX_DSAGET — Set subarray of AintoB. 419
MX_DSAREF — Set reference to subarray of AintoB 421
MX_DSASET — Set A into subarray of B. 423
MX_DTRNSP — General matrix transposition: B :— alpha*A~T ... 425
MX_DTRNSQR — Square matrix in-place transposition: A :— alpha*A ~T427
MX_FILL — Fill real matrix or vector 428
MX_MAT — Matrix data storage block 429
MX_RAND — Randomly generated matrix or vector 430
MX_REFCOPY — Copies input references of matrices A and B to
their output references 000000 432
MX_SLFS — Save or load a Matrix/Vector into file or string 433

MX_VEC — Vector data storage block 435

MX_WRITE — Write a Matrix/Vector to the console/system log .. 436
RTOV — Vector multiplexer 438
SWVMR — Vector/matrix /reference signal switch 439
VTOR — Vector demultiplexer v v v v v v v v v v v v o o v o v 440

352CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

CNA — Array (vector/matrix) constant

Block Symbol Licence: STANDARD

CNA

Function Description

The block CNA allocates memory for nmax elements of the type etype of the vector /matrix
referenced by the output vec and initializes all elements to data stored in the parameter
acn.

If the string parameter filename is not empty then it loads initalization data from
the filename file on the host computer in CSV format. Column separator can be comma
or semicolon or space (but the same in the whole file), decimal separator have to be dot,
row separator is new line. Empty lines are skipped.

If the parameter TRN = on then the output reference vec contains transposed data.

Note: In case of etype = Large (I64), values loaded from parameter acn are con-
verted to double-precision float due to implementation reasons, so you can loose precision
for very large values. If this could be a problem, use external file for initialization which
does not have this issue.

Parameters
filename CSV data file String
TRN Transpose loaded matrix Bool
nmax Allocated size of output matrix (total number of items) Long (I32)
42 110000000 ®1.00E+02
etype Type of elements ©8.00E+00 Long (I32)
1 ..., Bool
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 ... DWord (U32)
7T Float (F32)
8 Double (F64)
10 Large (I64)
acn Initial array value ®[0 1 2 3] Double (F64)
Output

vec Reference to vector/matrix data Reference

353

MB_DASUM — Sum of the absolute values

Block Symbol Licence: STANDARD

ux
n

yX
incXvalue
HLD E
MB_DASUM

Function Description

The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DASUM is called internally:

value = DASUM(N, uX, INCX);

where the values N and INCX are set in the following way:

e [f the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

e If the input incx > 0 then INCX is set to incx else INCX is set to 1.
The error flag E is set to on if:

e the reference uX is not defined (i.e. input uX is not connected),

e n < 0orincx <0,

e (N—1)*INCX+1>CNT.

See BLAS documentation [6] for more details.

Inputs
uX Input reference to vector x Reference
n Number of processed vector elements ©0.00E+00 Long (I32)
incx Index increment of vector x ©®0.00E+00 Long (I32)
HLD Hold Bool
Outputs
yX Output reference to vector x Reference
value Return value of the function Double (F64)

E Error flag Bool

354CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DAXPY — Performs y := a*x + y for vectors x,y

Block Symbol Licence: STANDARD

a

n yY
incx

incy E
HLD
MB_DAXPY

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DAXPY is
called internally:

DAXPY(N, a, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

e [f the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTY referenced by uY.

e If the input incx # 0 then INCX is set to incx else INCX is set to 1.
e If the input incy # 0 then INCY is set to incy else INCY is set to 1.
The error flag E is set to on if:
e the reference uX or uY is not defined (i.e. input uX or uY is not connected),
e n <0,

o (N— 1)« |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX,

e (N—1)x% |INCY| +1 > CNTY.

See BLAS documentation [6] for more details.

Inputs
uX Input reference to vector x Reference
uY Input reference to vector y Reference
a Scalar coefficient a Double (F64)

n Number of processed vector elements ©0.00E+00 Long (I32)

incx
incy
HLD

Outputs
yX

yY
E

Index increment of vector x
Index increment of vector y
Hold

Output reference to vector x
Output reference to vector y
Error indicator

355

Long (I32)
Long (I32)
Bool

Reference
Reference
Bool

356 CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DCOPY — Copies vector x to vector y

Block Symbol Licence: STANDARD

uX
uy
n
incx yY
incy

HD E
MB_DCOPY

yX

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DCOPY is
called internally:

DCOPY (N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

e [f the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

e [f the input incx # 0 then INCX is set to incx else INCX is set to 1.
e If the input incy # 0 then INCY is set to incy else INCY is set to 1.
The error flag E is set to on if:
e the reference uX or uY is not defined (i.e. input uX or uY is not connected),
e n <0,
e (N—1)# |INCX| + 1 > CNTX,

e (N—1)x |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uy.

See BLAS documentation [6] for more details.

Inputs
uX Input reference to vector x Reference
uY Input reference to vector y Reference
n Number of processed vector elements Long (I32)
inex Index increment of vector x Long (I32)
incy Index increment of vector y Long (I32)

HLD Hold Bool

357

Outputs
yX Output reference to vector x Reference
yY Output reference to vector y Reference

E Error indicator Bool

358CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DDOT — Dot product of two vectors

Block Symbol Licence: STANDARD

uX
uY
n yY
?nc"/alue
incy

o E
MB_DDOT

yX

Function Description

The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DDOT is
called internally:

DDOT(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

e [f the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

e [f the input incx # 0 then INCX is set to incx else INCX is set to 1.
e If the input incy # 0 then INCY is set to incy else INCY is set to 1.
The error flag E is set to on if:
e the reference uX or uY is not defined (i.e. input uX or uY is not connected),
e n <0,
e (N—1)# |INCX| + 1 > CNTX,

e (N—1)x |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uy.

See BLAS documentation [6] for more details.

Inputs
uX Input reference to vector x Reference
uY Input reference to vector y Reference
n Number of processed vector elements Long (I32)
inex Index increment of vector x Long (I32)
incy Index increment of vector y Long (I32)

HLD Hold Bool

Outputs

yX

yY
value
E

Output reference to vector x
Output reference to vector y
Return value of the function
Error indicator

359

Reference
Reference
Double (F64)
Bool

360CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DGEMM — Performs C := alpha*op(A)*op(B) + beta*C,
where op(X) = X or op(X) = X~ T

Block Symbol Licence: STANDARD

uA
uB
uC
> transayB

yA

Atransb
alpha yC
beta
o E
MB_DGEMM

Function Description

The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the BLAS function DGEMM
is called internally:

DGEMM (sTRANSA, sTRANSB, M, N, KA, alpha, uA, LDA, uB, LDB, beta, uC, LDC);
where parameters of DGEMM are set in the following way:
e Integer inputs transa and transb are mapped to strings sTRANSA and sTRANSB:
{0,1} — "N", {2} — "T" and {3} — "C".
e M is number of rows of the matrix referenced by uC.

e N is number of columns of the matrix referenced by uC.

e [f the input transa is equal to 0 or 1 then KA is number of columns else KA is
number rows of the matrix referenced by uA.

e LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.
The error flag E is set to on if:
e the reference ud or uB or uC is not defined (i.e. input uA or uB or uC is not connected),

e transa or transb is less than 0 or greater than 3

e KA = XB; if the input transb is equal to 0 or 1 then KB is number of rows else KB is
number of columns of the matrix referenced by uB (i.e. matrices op(A) and op(B)
have to be multipliable).

e the call of the function DGEMM returns error using the function XERBLA, see the
system log.

See BLAS documentation [6] for more details.

Inputs

uA

uB

uC
transa
transb
alpha
beta
HLD

Outputs

yA
yB
yC
E

Input reference to matrix A
Input reference to matrix B
Input reference to matrix C
Transposition of matrix A
Transposition of matrix B
Scalar coefficient alpha
Scalar coeflicient beta

Hold

Output reference to matrix A
Output reference to matrix B
Output reference to matrix C
Error indicator

10 13 ®0.00E+00
10 13 ©0.00E+00

0.0

361

Reference
Reference
Reference
Long (I32)
Long (I32)
Double (F64)
Double (F64)
Bool

Reference
Reference
Reference
Bool

362CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DGEMV — Performs y :— alpha*A*x + beta*y or y :— al-
pha*A~T*x + beta*y

Block Symbol Licence: STANDARD

uA
uX
uY
trans yX
incx

incy %
alpha

beta

Ho E
MB_DGEMV

yA

Function Description

The output references yA, yX and yY are always set to the corresponding input references
uA, uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DGEMV
is called internally:

DGEMV (sTRANS, M, N, alpha, uA, LDA, uX, INCX, beta, uY, INCY);

where parameters of DGEMV are set in the following way:

e Integer input trans is mapped to the string sTRANS: {0,1} — "N", {2} — "T" and
{3} — "cm.

M is number of rows of the matrix referenced by uA.

N is number of columns of the matrix referenced by uA.

LDA is the leading dimension of matrix referenced by uA.

If the input incx # 0 then INCX is set to incx else INCX is set to 1.

If the input incy # 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:
e the reference uA or uX or uY is not defined (i.e. input uA or uX or uY is not connected),
e trans is less than 0 or greater than 3

e the call of the function DGEMV returns error using the function XERBLA, see the
system log.

See BLAS documentation |6] for more details.

Inputs

uA

uX

uY
trans
incx
incy
alpha
beta
HLD

Outputs

yA
yX
yY
E

Input reference to matrix A
Input reference to vector x

Input reference to vector y

Transposition of the input matrix 40 13 ©0.00E+00
Index increment of vector x ®0.00E+00
Index increment of vector y »0.00E+00
Scalar coefficient alpha 0.0
Scalar coefficient beta

Hold

Output reference to matrix A
Output reference to vector x
Output reference to vector y
Error indicator

363

Reference
Reference
Reference
Long (I32)
Long (I32)
Long (I32)
Double (F64)
Double (F64)
Bool

Reference
Reference
Reference
Bool

364CHAPTER 14. MATRIX - BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DGER — Performs A :— alpha*x*y~T + A

Block Symbol Licence: STANDARD

ux
uy
uA
incx
incy yA
alpha
HLD
MB_DGER

yX

yY

Function Description

The output references yX, yY and yA are always set to the corresponding input references
uX, uY and uA. If HLD = on then nothing is computed otherwise the BLAS function DGER
is called internally:

DGER(M, N, alpha, uX, INCX, uY, INCY, uA, LDA);

where parameters of DGER are set in the following way:
e M is number of rows of the matrix referenced by uA.
e N is number of columns of the matrix referenced by uA.
e If the input incx #